scholarly journals Resolving the MYSO binaries PDS 27 and PDS 37 with VLTI/PIONIER

2019 ◽  
Vol 623 ◽  
pp. L5 ◽  
Author(s):  
E. Koumpia ◽  
K. M. Ababakr ◽  
W. J. de Wit ◽  
R. D. Oudmaijer ◽  
A. Caratti o Garatti ◽  
...  

Context. Binarity and multiplicity appear to be a common outcome in star formation. In particular, the binary fraction of massive (OB-type) stars can be very high. In many cases, the further stellar evolution of these stars is affected by binary interactions at some stage during their lifetime. The origin of this high binarity and the binary parameters are poorly understood because observational constraints are scarce, which is predominantly due to a dearth of known young massive binary systems. Aims. We aim to identify and describe massive young binary systems in order to fill in the gaps of our knowledge of primordial binarity of massive stars, which is crucial for our understanding of massive star formation. Methods. We observed the two massive young stellar objects (MYSOs) PDS 27 and PDS 37 at the highest spatial resolution provided by VLTI/PIONIER in the H-band (1.3 mas). We applied geometrical models to fit the observed squared visibilities and closure phases. In addition, we performed a radial velocity analysis using published VLT/FORS2 spectropolarimetric and VLT/X-shooter spectroscopic observations. Results. Our findings suggest binary companions for both objects at 12 mas (30 au) for PDS 27 and at 22–28 mas (42–54 au) for PDS 37. This means that they are among the closest MYSO binaries resolved to date. Conclusions. Our data spatially resolve PDS 27 and PDS 37 for the first time, revealing two of the closest and most massive (>8 M⊙) YSO binary candidates to date. PDS 27 and PDS 37 are rare but great laboratories to quantitatively inform and test the theories on formation of such systems.

2012 ◽  
Vol 8 (S287) ◽  
pp. 497-501
Author(s):  
Crystal L. Brogan ◽  
Todd R. Hunter ◽  
Claudia J. Cyganowski ◽  
Remy Indebetouw ◽  
Rachel Friesen ◽  
...  

AbstractWe have used the recently-upgraded Karl G. Jansky Very Large Array (JVLA) to conduct a K-band (~24 GHz) study of 22 massive young stellar objects in 1.3 cm continuum and a comprehensive set of diagnostic lines. This survey is unique in that it samples a wide range of massive star formation signposts simultaneously for the first time. In this proceeding we present preliminary results for the 11 sources in the 2-4 kpc distance bin. We detect compact NH3 cores in all of the fields, with many showing emission up through the (6,6) transition. Maser emission in the 25 GHz CH3OH ladder is present in 7 of 11 sources. We also detect non-thermal emission in the NH3 (3,3) transition in 7 of 11 sources.


2019 ◽  
Vol 487 (2) ◽  
pp. 1517-1528 ◽  
Author(s):  
Xu Li ◽  
Jarken Esimbek ◽  
Jianjun Zhou ◽  
W A Baan ◽  
Weiguang Ji ◽  
...  

Abstract A multi-wavelength analysis of the large Galactic infrared bubble N 24 is presented in this paper in order to investigate the molecular and star-formation environment around expanding H ii regions. Using archival data from Herschel and ATLASGAL, the distribution and physical properties of the dust over the entire bubble are studied. Using the Clumpfind2d algorithm, 23 dense clumps are identified, with sizes and masses in the range 0.65–1.73 pc and 600–16 300 M⊙, respectively. To analyse the molecular environment in N 24, observations of NH3 (1,1) and (2,2) were carried out using the Nanshan 26-m radio telescope. Analysis of the kinetic temperature and gravitational stability of these clumps suggests gravitational collapse in several of them. The mass–size distributions of the clumps and the presence of massive young protostars indicate that the shell of N 24 is a region of ongoing massive-star formation. The compatibility of the dynamical and fragmentation timescales and the overabundance of young stellar objects and clumps on the rim suggest that the ‘collect-and-collapse’ mechanism is in play at the boundary of the bubble, but the existence of the infrared dark cloud at the edge of bubble indicates that a ‘radiation-driven implosion’ mechanism may also have played a role there.


1997 ◽  
Vol 182 ◽  
pp. 525-536
Author(s):  
Ed Churchwell

Observations during the past several years strongly imply that virtually every star, independent of final mass, goes through a phase of rapid outflow simultaneously with rapid accretion during formation. The structure and properties of outflows and accretion disks associated with low-mass star formation has received intensive observational attention during the past several years (see the reviews and references in Lada 1985; Edwards, Ray, and Mundt 1993; Fukui et al. 1993; and this symposium). Young stellar objects (YSOs) with Lbol < 103 L⊘ will be referred to as “low-mass” stars in this review. The range of physical properties of CO outflows associated with YSOs of all masses are enormous, see Fukui et al. (1993). I will focus attention in this review on what we know about massive YSOs and their environments.


2006 ◽  
Vol 2 (S237) ◽  
pp. 40-46
Author(s):  
Mónica Rubio

AbstractMultiwavelengths studies of massive star formation regions in the LMC and SMC reveal that a second generation of stars is being formed in dense molecular clouds located in the surroundings of the massive clusters. These dense molecular clouds have survived the action of massive star UV radiation fields and winds and they appear as compact dense H2 knots in regions of weak CO emission. Alternatively, we have found that large molecular clouds, probably remnants of the parental giant molecular clouds where the first generation of stars were formed, are suffering the interaction of the winds and UV radiation field in their surfaces in the direction of the central massive cluster or massive stars. These molecular regions show 1.2 mm continuum emission form cold dust and they show embedded IR sources as determined from deep ground base JHKs imaging. The distribution of young IR sources as determined from their Mid IR colors obtained by SPITZER concentrate in the maxima of CO and dust emission. IR spectroscopy of the embedded sources with high IR excess confirm their nature as massive young stellar objects (MYSO's). Our results are suggestive of contagious star formation where triggering and induced star formation could be taking place.


2020 ◽  
Vol 637 ◽  
pp. A64
Author(s):  
J. C. Morford ◽  
D. M. Fenech ◽  
R. K. Prinja ◽  
R. Blomme ◽  
J. A. Yates ◽  
...  

Context. The role of massive stars is central to an understanding of galactic ecology. It is important to establish the details of how massive stars provide radiative, chemical, and mechanical feedback in galaxies. Central to these issues is an understanding of the evolution of massive stars, and the critical role of mass loss via strongly structured winds and stellar binarity. Ultimately, and acting collectively, massive stellar clusters shape the structure and energetics of galaxies. Aims. We aim to conduct high-resolution, deep field mapping at 21 cm of the core of the massive Cygnus OB2 association and to characterise the properties of the massive stars and colliding winds at this waveband. Methods. We used seven stations of the e-MERLIN radio facility, with its upgraded bandwidth and enhanced sensitivity to conduct a 21 cm census of Cygnus OB2. Based on 42 hours of observations, seven overlapping pointings were employed over multiple epochs during 2014 resulting in 1σ sensitivities down to ∼21 μJy and a resolution of ∼180 mas. Results. A total of 61 sources are detected at 21 cm over a ∼0.48° × 0.48° region centred on the heart of the Cyg OB2 association. Of these 61 sources, 33 are detected for the first time. We detect a number of previously identified sources including four massive stellar binary systems, two YSOs, and several known X-ray and radio sources. We also detect the LBV candidate (possible binary system) and blue hypergiant star of Cyg OB2 #12. Conclusions. The 21 cm observations secured in the COBRaS Legacy project provide data to constrain conditions in the outer wind regions of massive stars; determine the non-thermal properties of massive interacting binaries; examine evidence for transient sources, including those associated with young stellar objects; and provide unidentified sources that merit follow-up observations. The 21 cm data are of lasting value and will serve in combination with other key surveys of Cyg OB2, including Chandra and Spitzer.


2006 ◽  
Vol 2 (S237) ◽  
pp. 401-401
Author(s):  
C.-H. R. Chen ◽  
Y.-H. Chu ◽  
R. A. Gruendl ◽  
F. Heitsch

AbstractWe have used Spitzer IRAC and MIPS observations of N44 to identify young stellar objects (YSOs). Sixty YSO candidates with masses ≳4M are identified. We have compared the distribution of YSOs with those of the ionized gas, molecular clouds, and HI gas to study the properties of star formation.


2020 ◽  
Vol 496 (1) ◽  
pp. 870-874
Author(s):  
M B Areal ◽  
A Buccino ◽  
S Paron ◽  
C Fariña ◽  
M E Ortega

ABSTRACT Evidence for triggered star formation linking three generations of stars is difficult to assemble, as it requires convincingly associating evolved massive stars with H ii regions that, in turn, would need to present signs of active star formation. We present observational evidence for triggered star formation relating three generations of stars in the neighbourhood of the star LS II +26 8. We carried out new spectroscopic observations of LS II +26 8, revealing that it is a B0 III-type star. We note that LS II +26 8 is located exactly at the geometric centre of a semi-shell-like H ii region complex. The most conspicuous component of this complex is the H ii region Sh2-90, which is probably triggering a new generation of stars. The distances to LS II +26 8 and to Sh2-90 are in agreement (between 2.6 and 3 kpc). Analysis of the interstellar medium on a larger spatial scale shows that the H ii region complex lies on the north-western border of an extended H2 shell. The radius of this molecular shell is about 13 pc, which is in agreement with what an O9 V star (the probable initial spectral type of LS II +26 8 as inferred from evolutive tracks) can generate through its winds in the molecular environment. In conclusion, the spatial and temporal correspondences derived in our analysis enable us to propose a probable triggered star formation scenario initiated by the evolved massive star LS II +26 8 during its main-sequence stage, followed by stars exciting the H ii region complex formed in the molecular shell, and culminating in the birth of young stellar objects around Sh2-90.


2004 ◽  
Vol 82 (6) ◽  
pp. 740-743 ◽  
Author(s):  
P A Feldman ◽  
R O Redman ◽  
L W Avery ◽  
J Di Francesco ◽  
J D Fiege ◽  
...  

The line profiles of dense cores in infrared-dark clouds indicate the presence of young stellar objects (YSOs), but the youth of the YSOs and the large distances to the clouds make it difficult to distinguish the outflows that normally accompany star formation from turbulence within the cloud. We report here the first unambiguous identification of a bipolar outflow from a young stellar object (YSO) in an infrared-dark cloud, using observations of SiO to distinguish the relatively small amounts of gas in the outflow from the rest of the ambient cloud. Key words: infrared-dark clouds, star formation, bipolar outflows, SiO, G81.56+0.10.


2020 ◽  
Vol 494 (3) ◽  
pp. 3061-3079 ◽  
Author(s):  
D J Rosario ◽  
V A Fawcett ◽  
L Klindt ◽  
D M Alexander ◽  
L K Morabito ◽  
...  

ABSTRACT Red quasi-stellar objects (QSOs) are a subset of the luminous end of the cosmic population of active galactic nuclei (AGNs), most of which are reddened by intervening dust along the line of sight towards their central engines. In recent work from our team, we developed a systematic technique to select red QSOs from the Sloan Digital Sky Survey, and demonstrated that they have distinctive radio properties using the Faint Images of the Radio Sky at Twenty centimetres radio survey. Here we expand our study using low-frequency radio data from the LOFAR Two-metre Sky Survey (LoTSS). With the improvement in depth that LoTSS offers, we confirm key results: Compared to a control sample of normal ‘blue’ QSOs matched in redshift and accretion power, red QSOs have a higher radio detection rate and a higher incidence of compact radio morphologies. For the first time, we also demonstrate that these differences arise primarily in sources of intermediate radio loudness: Radio-intermediate red QSOs are × 3 more common than typical QSOs, but the excess diminishes among the most radio-loud systems and the most radio-quiet systems in our study. We develop Monte Carlo simulations to explore whether differences in star formation could explain these results, and conclude that, while star formation is an important source of low-frequency emission among radio-quiet QSOs, a population of AGN-driven compact radio sources is the most likely cause for the distinct low-frequency radio properties of red QSOs. Our study substantiates the conclusion that fundamental differences must exist between the red and normal blue QSO populations.


2020 ◽  
Vol 496 (3) ◽  
pp. 3128-3141 ◽  
Author(s):  
A Rodríguez-Kamenetzky ◽  
C Carrasco-González ◽  
J M Torrelles ◽  
W H T Vlemmings ◽  
L F Rodríguez ◽  
...  

ABSTRACT The massive star-forming region W75N (B) is thought to host a cluster of massive protostars (VLA 1, VLA 2, and VLA 3) undergoing different evolutionary stages. In this work, we present radio continuum data with the highest sensitivity and angular resolution obtained to date in this region, using the VLA-A and covering a wide range of frequencies (4–48 GHz), which allowed us to study the morphology and the nature of the emission of the different radio continuum sources. We also performed complementary studies with multi-epoch Very Large Array (VLA) data and Atacama Large Millimeter Array (ALMA) archive data at 1.3 mm wavelength. We find that VLA 1 is driving a thermal radio jet at scales of ≈0.1 arcsec (≈130 au), but also shows signs of an incipient hypercompact H ii region at scales of ≲1 arcsec (≲1300 au). VLA 3 is also driving a thermal radio jet at scales of a few tenths of arcsec (few hundred of au). We conclude that this jet is shock exciting the radio continuum sources Bc and VLA 4 (obscured Herbig–Haro objects), which show proper motions moving outward from VLA 3 at velocities of ≈112–118 km s−1. We have also detected three new weak radio continuum sources, two of them associated with millimetre continuum cores observed with ALMA, suggesting that these two sources are also embedded young stellar objects in this massive star-forming region.


Sign in / Sign up

Export Citation Format

Share Document