scholarly journals Stellar populations in hosts of giant radio galaxies and their neighbouring galaxies

2019 ◽  
Vol 624 ◽  
pp. A91 ◽  
Author(s):  
A. Kuźmicz ◽  
B. Czerny ◽  
C. Wildy

Context. Giant radio galaxies (with projected linear size of radio structure larger than 0.7 Mpc) are very rare and unusual objects. Only ∼5% of extended radio sources reach such sizes. Understanding of the processes responsible for their large sizes is crucial to further our knowledge about the radio source’s evolution. Aims. We check the hypothesis that giants become extremely large due to the specific history of their host galaxy formation, as well as in the context of the cluster or group of galaxies where they evolve. Therefore we study the star formation histories in their host galaxies and in galaxies located in their neighbourhood. Methods. We studied 41 giant-size radio galaxies as well as galaxies located within a radius of 5 Mpc around giants to verify whether the external conditions of the intergalactic medium somehow influence the internal evolution of galaxies in the group/cluster. We compared the results with a control sample of smaller-sized Fanaroff–Riley type II radio galaxies and their neighbouring galaxies. We fit stellar continua in all galaxy spectra using the spectral synthesis code STARLIGHT and provide statistical analysis of the results. Results. We find that hosts of giant radio galaxies have a larger amount of intermediate age stellar populations compared with smaller-sized FRII radio sources. The same result is also visible when we compare neighbouring galaxies located up to 1.5 Mpc around giants and FRIIs. This may be evidence that star formation in groups with giants was triggered due to global processes occurring in the ambient intergalactic medium. These processes may also contribute to mechanisms responsible for the extremely large sizes of giants.

2019 ◽  
Vol 489 (3) ◽  
pp. 3403-3411
Author(s):  
Takalani Marubini ◽  
Matt J Jarvis ◽  
Stephen Fine ◽  
Tom Mauch ◽  
Kim McAlpine ◽  
...  

ABSTRACT In this study we define a new sample of distant powerful radio galaxies in order to study their host galaxy properties and provide targets for future observations of H i absorption with new radio telescopes and to understand the fuelling and feedback from such sources. We have cross-matched the Sydney University Molonglo Sky Survey (SUMSS) radio catalogue at 843 MHz with the VISTA Hemisphere Survey (VHS) near-infrared catalogue using the likelihood ratio technique. Photometric redshifts from the Dark Energy Survey are then used to assign redshifts to the radio source counterparts. We found a total of 249 radio sources with photometric redshifts over a 148 deg2 region. By fitting the optical and near-infrared photometry with spectral synthesis models we determine the stellar mass and star formation rates of the radio sources, finding typical stellar masses of 1011–1012 M⊙ for the powerful high-redshift radio galaxies. We also find a population of low-mass blue galaxies. However, by comparing the derived star formation rates to the radio luminosity, we suggest that these sources are false positives in our likelihood ratio analysis. Follow-up, higher resolution (≲5 arcsec) radio imaging would help alleviate these mid-identifications, as the limiting factor in our cross-identifications is the low resolution (∼45 arcsec) of the SUMSS radio imaging.


2018 ◽  
Vol 620 ◽  
pp. A16 ◽  
Author(s):  
Andrew Butler ◽  
Minh Huynh ◽  
Ivan Delvecchio ◽  
Anna Kapińska ◽  
Paolo Ciliegi ◽  
...  

The classification of the host galaxies of the radio sources in the 25 deg2 ultimate XMM extragalactic survey south field (XXL-S) is presented. XXL-S was surveyed at 2.1 GHz with the Australia Telescope Compact Array (ATCA) and is thus far the largest area radio survey conducted down to rms flux densities of σ ~ 41 μJy beam−1. Of the 6287 radio sources in XXL-S, 4758 (75.7%) were cross-matched to an optical counterpart using the likelihood ratio technique. There are 1110 spectroscopic redshifts and 3648 photometric redshifts available for the counterparts, of which 99.4% exist out to z ~ 4. A number of multiwavelength diagnostics, including X-ray luminosities, mid-infrared colours, spectral energy distribution fits, radio luminosities, and optical emission lines and colours, were used to classify the sources into three types: low-excitation radio galaxies (LERGs), high-excitation radio galaxies (HERGs), and star-forming galaxies (SFGs). The final sample contains 1729 LERGs (36.3%), 1159 radio-loud HERGs (24.4%), 296 radio-quiet HERGs (6.2%), 558 SFGs (11.7%), and 1016 unclassified sources (21.4%). The XXL-S sub-mJy radio source population is composed of ~75% active galactic nuclei and ~20% SFGs down to 0.2 mJy. The host galaxy properties of the HERGs in XXL-S are independent of the HERG selection, but the XXL-S LERG and SFG selection is, due to the low spectral coverage, largely determined by the known properties of those populations. Considering this caveat, the LERGs tend to exist in the most massive galaxies with low star formation rates and redder colours, whereas the HERGs and SFGs exist in galaxies of lower mass, higher star formation rates, and bluer colours. The fraction of blue host galaxies is higher for radio-quiet HERGs than for radio-loud HERGs. LERGs and radio-loud HERGs are found at all radio luminosities, but radio-loud HERGs tend to be more radio luminous than LERGs at a given redshift. These results are consistent with the emerging picture in which LERGs exist in the most massive quiescent galaxies typically found in clusters with hot X-ray halos and HERGs are associated with ongoing star formation in their host galaxies via the accretion of cold gas.


2013 ◽  
Vol 9 (S304) ◽  
pp. 323-326
Author(s):  
Marios Karouzos ◽  
Myungshin Im ◽  
Markos Trichas ◽  
Tomo Goto ◽  
Matt Malkan ◽  
...  

AbstractThere exist strong evidence supporting the co-evolution of central supermassive black holes and their host galaxies; however it is still under debate how such a relation comes about and whether it is relevant for all or only a subset of galaxies. A rich multi-wavelength dataset is available for the North Ecliptic Pole field, most notably surveyed by the AKARI infrared space telescope. We investigate the star-formation properties of the host galaxies of radio-AGN together with the radio feedback mechanism, potentially responsible for the eventual quenching of star formation. Using broadband SED modelling, the nuclear and host galaxy components of these sources are studied as a function of their radio luminosity. Here we present results concerning the AGN content of the radio sources in this field, while offering evidence supporting a “maintenance” type of feedback from powerful radio-jets.


2006 ◽  
Vol 2 (S238) ◽  
pp. 341-342
Author(s):  
Xian Chen ◽  
Fukun Liu

AbstractBoth the X-shaped radio galaxies and double-double radio galaxies (DDRGs) are suggested in the literature to be due to the binary-accretion disk interaction or to the coalescence of SMBBHs. These models suggest some relationship between the two types of radio sources. In this paper, we collected data from literatures for two samples of X-shaped and double-double radio galaxies together with a control sample of FRII radio galaxies and statistically investigate their properties.We find that the wings of X-shaped radio galaxies and the outer and inner lobes of DDRGs tend to be perpendicular to the major axis of the host galaxy (or dust structures), while the active lobes orient randomly. Both X-shaped and double-double radio galaxies are low luminous FRII or FRI/FRII transitional radio sources with the similar dimensionless accretion rate ṁ ∼ 0.01, which is about the transitional accretion rate given in the literature.All the statistic results can be reconciled if there is an evolutionary relationship between X-shaped and double-double radio galaxies, in the sense that X-shaped radio galaxies may be due to the interaction of active SMBBHs and accretion disk and DDRGs due to the removal of inner disk region and the coalescence of SMBBHs.


2018 ◽  
Vol 621 ◽  
pp. A19
Author(s):  
R. Ricci ◽  
I. Prandoni ◽  
H. R. De Ruiter ◽  
P. Parma

Aims. It is now established that the faint radio population is a mixture of star-forming galaxies and faint active galactic nuclei (AGNs), with the former dominating below S1.4 GHz ∼ 100μJy and the latter at larger flux densities. The faint radio AGN component can itself be separated into two main classes, mainly based on the host-galaxy properties: sources associated with red/early-type galaxies (like radio galaxies) are the dominant class down to ∼100 μJy; quasar/Seyfert–like sources contribute an additional 10–20%. One of the major open questions regarding faint radio AGNs is the physical process responsible for their radio emission. This work aims at investigating this issue, with particular respect to the AGN component associated with red/early-type galaxies. Such AGNs show, on average, flatter radio spectra than radio galaxies and are mostly compact (≤30 kpc in size). Various scenarios have been proposed to explain their radio emission. For instance they could be core/core-jet dominated radio galaxies, low-power BL Lacertae, or advection-dominated accretion flow (ADAF) systems. Methods. We used the Australia Telescope Compact Array (ATCA) to extend a previous follow-up multi-frequency campaign to 38 and 94 GHz. This campaign focuses on a sample of 28 faint radio sources associated with early-type galaxies extracted from the ATESP 5 GHz survey. Such data, together with those already at hand, are used to perform radio spectral and variability analyses. Both analyses can help us to disentangle between core- and jet-dominated sources, as well as to verify the presence of ADAF/ADAF+jet systems. Additional high-resolution observations at 38 GHz were carried out to characterise the radio morphology of these sources on kiloparsec scales. Results. Most of the sources (25/28) were detected at 38 GHz, while only one (ATESP5J224547−400324) of the twelve sources observed at 94 GHz was detected. From the analysis of the radio spectra we confirmed our previous findings that pure ADAF models can be ruled out. Only eight out of the 28 sources were detected in the 38-GHz high-resolution (0.6 arcsec) radio images and of those eight only one showed a tentative core-jet structure. Putting together spectral, variability, luminosity, and linear size information we conclude that different kinds of sources compose our AGN sample: (a) luminous and large (≥100 kpc) classical radio galaxies (∼18% of the sample); (b) compact (confined within their host galaxies), low-luminosity, power-law (jet-dominated) sources (∼46% of the sample); and (c) compact, flat (or peaked) spectrum, presumably core-dominated, radio sources (∼36% of the sample). Variability is indeed preferentially associated with the latter.


2007 ◽  
Vol 3 (S245) ◽  
pp. 261-262
Author(s):  
Nathan de Vries ◽  
I. A. G. Snellen ◽  
R. T. Schilizzi ◽  
M. D. Lehnert ◽  
M. N. Bremer

AbstractGigahertz Peaked Spectrum (GPS) radio galaxies are generally thought to be the young counterparts of classical extended radio sources and live in massive ellipticals. GPS sources are vital for studying the early evolution of radio-loud AGN, the trigger of their nuclear activity, and the importance of feedback in galaxy evolution. We study the Parkes half-Jansky sample of GPS radio galaxies of which now all host galaxies have been identified and 80% has their redshifts determined (0.122 < z < 1.539). Analysis of the absolute magnitudes of the GPS host galaxies show that at z > 1 they are on average a magnitude fainter than classical 3C radio galaxies. This suggests that the AGN in young radio galaxies have not yet much influenced the overall properties of the host galaxy. However their restframe UV luminosities indicate that there is a low level of excess as compared to passive evolution models.


2012 ◽  
Vol 8 (S295) ◽  
pp. 270-270
Author(s):  
Marios Karouzos ◽  
Myungshin Im ◽  
Markos Trichas ◽  

AbstractWe study the host galaxy properties of radio sources in the AKARI-North Ecliptic Pole (NEP) field, using an ensemble of multi-wavelength datasets. We identify both radio-loud and radio-quiet AGN and study their host galaxy properties by means of SED fitting. We investigate the relative importance of nuclear and star-formation activity in radio-AGN and assess the role of radio-AGN as efficient quenchers of star-formation in their host galaxies.


2019 ◽  
Vol 489 (4) ◽  
pp. 4944-4961 ◽  
Author(s):  
Henry R M Zovaro ◽  
Nicole P H Nesvadba ◽  
Robert Sharp ◽  
Geoffrey V Bicknell ◽  
Brent Groves ◽  
...  

ABSTRACT Hydrodynamical simulations predict that the jets of young radio sources can inhibit star formation in their host galaxies by injecting heat and turbulence into the interstellar medium (ISM). To investigate jet–ISM interactions in a galaxy with a young radio source, we have carried out a multiwavelength study of the z = 0.025 Compact Steep Spectrum radio source hosted by the early-type galaxy UGC 05771. Using Keck/OSIRIS observations, we detected H2 1–0 S(1) and [Fe ii] emission at radii of 100s of parsecs, which traces shocked molecular and ionized gas being accelerated outwards by the jets to low velocities, creating a ‘stalling wind’. At kpc radii, we detected shocked ionized gas using observations from the CALIFA survey, covering an area much larger than the pc-scale radio source. We found that existing interferometric radio observations fail to recover a large fraction of the source’s total flux, indicating the likely existence of jet plasma on kpc scales, which is consistent with the extent of shocked gas in the host galaxy. To investigate the star formation efficiency in UGC 05771, we obtained IRAM CO observations to analyse the molecular gas properties. We found that UGC 05771 sits below the Kennicutt–Schmidt relation, although we were unable to definitively conclude if direct interactions from the jets are inhibiting star formation. This result shows that jets may be important in regulating star formation in the host galaxies of compact radio sources.


2018 ◽  
Vol 618 ◽  
pp. A104 ◽  
Author(s):  
M. J. Michałowski ◽  
G. Gentile ◽  
T. Krühler ◽  
H. Kuncarayakti ◽  
P. Kamphuis ◽  
...  

Context. The host galaxies of gamma-ray bursts (GRBs) have been claimed to have experienced a recent inflow of gas from the intergalactic medium. This is because their atomic gas distribution is not centred on their optical emission and because they are deficient in molecular gas given their high star formation rates (SFRs). Similar studies have not been conducted for host galaxies of relativistic supernovae (SNe), which may have similar progenitors. Aims. The potential similarity of the powering mechanisms of relativistic SNe and GRBs allowed us to make a prediction that relativistic SNe are born in environments similar to those of GRBs, that is, ones which are rich in atomic gas. Here we embark on testing this hypothesis by analysing the properties of the host galaxy NGC 3278 of the relativistic SN 2009bb. This is the first time the atomic gas properties of a relativistic SN host are provided and the first time resolved 21 cm-hydrogen-line (H I) information is provided for a host of an SN of any type in the context of the SN position. Methods. We obtained radio observations with the Australia Telescope Compact Array (ATCA) covering the H I line, and optical integral field unit spectroscopy observations with the Multi Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT). Moreover, we analysed archival carbon monoxide (CO) and multi-wavelength data for this galaxy. Results. The atomic gas distribution of NGC 3278 is not centred on the optical galaxy centre, but instead around a third of atomic gas resides in the region close to the SN position. This galaxy has a few times lower atomic and molecular gas masses than predicted from its SFR. Its specific SFR (sSFR ≡ SFR/M*) is approximately two to three times higher than the main-sequence value, placing it at the higher end of the main sequence, towards starburst galaxies. SN 2009bb exploded close to the region with the highest SFR density and the lowest age, as evident from high Hα EW, corresponding to the age of the stellar population of ~5.5 Myr. Assuming this timescale was the lifetime of the progenitor star, its initial mass would have been close to ~36 M⊙. Conclusions. As for GRB hosts, the gas properties of NGC 3278 are consistent with a recent inflow of gas from the intergalactic medium, which explains the concentration of atomic gas close to the SN position and the enhanced SFR. Super-solar metallicity at the position of the SN (unlike for most GRBs) may mean that relativistic explosions signal a recent inflow of gas (and subsequent star formation), and their type (GRBs or SNe) is determined either (i) by the metallicity of the inflowing gas, so that metal-poor gas results in a GRB explosion and metal-rich gas (for example a minor merger with an evolved galaxy or re-accretion of expelled gas) results in a relativistic SN explosion without an accompanying GRB, or (ii) by the efficiency of gas mixing (efficient mixing for SN hosts leading to a quick disappearance of metal-poor regions), or (iii) by the type of the galaxy (more metal-rich galaxies would result in only a small fraction of star formation being fuelled by metal-poor gas).


2019 ◽  
Vol 622 ◽  
pp. A13 ◽  
Author(s):  
V. H. Mahatma ◽  
M. J. Hardcastle ◽  
W. L. Williams ◽  
P. N. Best ◽  
J. H. Croston ◽  
...  

Context. Double-double radio galaxies (DDRGs) represent a short but unique phase in the life-cycle of some of the most powerful radio-loud active galactic nuclei (RLAGN). These galaxies display large-scale remnant radio plasma in the intergalactic medium left behind by a past episode of active galactic nuclei (AGN) activity, and meanwhile, the radio jets have restarted in a new episode. The knowledge of what causes the jets to switch off and restart is crucial to our understanding of galaxy evolution, while it is important to know if DDRGs form a host galaxy dichotomy relative to RLAGN. Aims. The sensitivity and field of view of LOFAR enables the observation of DDRGs on a population basis rather than single-source observations. Using statistical comparisons with a control sample of RLAGN, we may obtain insights into the nature of DDRGs in the context of their host galaxies, where physical differences in their hosts compared to RLAGN as a population may allow us to infer the conditions that drive restarting jets. Methods. We utilised the LOFAR Two-Metre Sky Survey (LoTSS) DR1, using a visual identification method to compile a sample of morphologically selected candidate DDRGs, showing two pairs of radio lobes. To confirm the restarted nature in each of the candidate sources, we obtained follow-up observations with the Karl. G. Jansky Very Large Array (VLA) at higher resolution to observe the inner lobes or restarted jets, the confirmation of which created a robust sample of 33 DDRGs. We created a comparison sample of 777 RLAGN, matching the luminosity distribution of the DDRG sample, and compared the optical and infrared magnitudes and colours of their host galaxies. Results. We find that there is no statistically significant difference in the brightness of the host galaxies between double-doubles and single-cycle RLAGN. The DDRG and RLAGN samples also have similar distributions in WISE mid-infrared colours, indicating similar ages of stellar populations and dust levels in the hosts of DDRGs. We conclude that DDRGs and “normal” RLAGN are hosted by galaxies of the same type, and that DDRG activity is simply a normal part of the life cycle of RLAGN. Restarted jets, particularly for the class of low-excitation radio galaxies, rather than being a product of a particular event in the life of a host galaxy, must instead be caused by smaller scale changes, such as in the accretion system surrounding the black hole.


Sign in / Sign up

Export Citation Format

Share Document