scholarly journals Upper limits on the water vapour content of the β Pictoris debris disk

2019 ◽  
Vol 628 ◽  
pp. A127 ◽  
Author(s):  
M. Cavallius ◽  
G. Cataldi ◽  
A. Brandeker ◽  
G. Olofsson ◽  
B. Larsson ◽  
...  

Context. The debris disk surrounding β Pictoris has been observed with ALMA to contain a belt of CO gas with a distinct peak at ~85 au. This CO clump is thought to be the result of a region of enhanced density of solids that collide and release CO through vaporisation. The parent bodies are thought to be comparable to solar system comets, in which CO is trapped inside a water ice matrix. Aims. Since H2O should be released along with CO, we aim to put an upper limit on the H2O gas mass in the disk of β Pictoris. Methods. We used archival data from the Heterodyne Instrument for the Far-Infrared (HIFI) aboard the Herschel Space Observatory to study the ortho-H2O 110–101 emission line. The line is undetected. Using a python implementation of the radiative transfer code RADEX, we converted upper limits on the line flux to H2O gas masses. The resulting lower limits on the CO/H2O mass ratio are compared to the composition of solar system comets. Results. Depending on the assumed gas spatial distribution, we find a 95% upper limit on the ortho-H2O line flux of 7.5 × 10−20 W m−2 or 1.2 × 10−19 W m−2. These translate into an upper limit on the H2O mass of 7.4 × 1016–1.1 × 1018 kg depending on both the electron density and gas kinetic temperature. The range of derived gas-phase CO/H2O ratios is marginally consistent with low-ratio solar system comets.

2007 ◽  
Vol 16 (07) ◽  
pp. 1243-1248 ◽  
Author(s):  
I. B. KHRIPLOVICH ◽  
N. PRODUIT

If primordial black holes (PBH) saturate the present upper limit on the dark matter density in our Solar system and if their radiation spectrum is discrete, the sensitivity of modern detectors is close to that necessary for detecting this radiation. This conclusion is not in conflict with the upper limits on the PBH evaporation rate.


1990 ◽  
Vol 05 (02) ◽  
pp. 115-123 ◽  
Author(s):  
THOMAS G. RIZZO

The experimental value of the ρ parameter is used to obtain an upper limit on the top-quark mass (mt) in models with extended gauge sectors. This limit is found to be generally stronger than that obtained from similar considerations in the Standard Model (SM). This bound, however, is shown to depend strongly on the particular extension of the usual SM gauge sector under consideration. Improved experimental lower limits on mt can also be used to rule out large regions of the parameter space of extended electroweak models.


2017 ◽  
Vol 38 (10) ◽  
pp. 729-734 ◽  
Author(s):  
Salvatore Gervasi ◽  
Massimiliano Bianco ◽  
Vincenzo Palmieri ◽  
Francesco Cuccaro ◽  
Paolo Zeppilli

AbstractA QTc interval at the upper limits in young athletes can be challenging. Regardless of factors able to influence it (age, electrolytes, etc.), several authors underlined that rate correction formulas can often underestimate/overestimate it. Our objective was to identify the most reliable formula and relative upper normal limit of QTc for this population. The rest ECG of 701 healthy elite male athletes was analyzed. QTc was calculated with 4 formulas (Bazett, Fridericia, Framingham, Hodges). Correlation/regression analysis of QTc vs. heart rate and upper limits were calculated and compared considering different age groups. Abnormal ECGs were compared considering different upper limits. Correlation between QTc and heart rate was highly significant using Bazett’s and Framingham’s formulas, lower using Hodges’ formula, and not significant using Fridericia’s formula. Except for Framingham’s, the number of abnormal ECGs was identical considering an upper limit of 480 msec, and significantly different for lower limits. Upper limits were: Bazett 469 msec, Fridericia 451 msec, Framingham 458 msec, and Hodges 461 msec. Except for Framingham’s, no difference among other formulas in individuating abnormal ECGs for QTc≥480 msec was found. QTc obtained with the Bazett’s formula appears highly dependent on heart rate. This, especially in the grey zone (440–480 msec), can lead to overtesting. Framingham’s formula shows similar limits. Hodges’ formula offers uncertain reliability. Fridericia’s formula seems the most reliable.


2020 ◽  
Author(s):  
Laurence O'Rourke ◽  
Thomas Müller ◽  
Nicolas Biver ◽  
Dominique Bockelée-Morvan ◽  
Sunao Hasegawa ◽  
...  

<p>Asteroids (24) Themis and (65) Cybele have an absorption feature at 3.1 µm reported to be directly linked to surface water ice. We searched for water vapour escaping from these asteroids with the Herschel Space Observatory Heterodyne Instrument for the Far Infrared (HIFI). While no H<sub>2</sub>O line emission was detected, we obtain sensitive 3σ water production rate upper limits of Q(H<sub>2</sub>O) < 4.1 × 10<sup>26 </sup>mol. s<sup>−</sup><sup>1</sup> for Themis and Q(H<sub>2</sub>O) < 7.6 × 10<sup>26 </sup>mol. s<sup>−</sup><sup>1</sup> for Cybele. Using a Thermophysical Model (TPM), we merge data from Subaru/Comics and Herschel/SPIRE with the contents of a multi-observatory database to derive new radiometric properties for these two asteroids. For Themis, we find a thermal inertia Γ = 20<sup>+25</sup><sub>-10</sub> J m<sup>-2</sup> s<sup>-1/2</sup> K<sup>-1</sup>, a diameter 192 <sup>+10</sup><sub>-7</sub> km and a geometric V-band albedo p<sub>V </sub>= 0.07 ±0.01. For Cybele we obtain a thermal inertia Γ = 25 <sup>+28</sup><sub>-19</sub> J m<sup>-2</sup> s<sup>-1/2</sup> K<sup>-1</sup>, a diameter 282 ± 9 km, and an albedo p<sub>V </sub>= 0.042± 0.005. Using all inputs, we estimate that water ice intimately mixed with the asteroids’ dark surface material would cover < 0.0017% for Themis and < 0.0033% for Cybele of their surfaces, while an areal mixture with very clean ice (bond albedo 0.8 for Themis and 0.7 for Cybele) would cover < 2.2% for Themis and < 1.5% for Cybele, of their surfaces. While surface (& sub-surface) water ice may exist in small localized amounts on both asteroids, it is not the reason for the observed 3.1µm absorption feature.</p>


2013 ◽  
Vol 41 (01) ◽  
pp. 31-36
Author(s):  
E. Kienzle ◽  
N. Becker

ZusammenfassungIm Rahmen einer Eliminationsdiät wird regelmäßig Pferdefleisch eingesetzt. Aus Gründen der Praktikabilität verwenden Tierbesitzer häufig kommerziell erhältliches Pferdefleisch aus der Dose. Aufgrund eines Berichts von Zervikalspondylosen bei einer auf Futtermittel allergischen Katze erfolgte eine Analyse verschiedener auf Pferdefleisch basierender Produkte hinsichtlich des Vitamin-AGehalts.In 14 Pferdefleischerzeugnissen wurde der Vitamin-A-Gehalt (Retinol) analysiert. Der Gehalt an umsetzbarer Energie wurde mithilfe von Schätzformeln auf Basis der Deklaration berechnet.In Produkten mit deklarierten Anteilen von Leber, Innereien oder tierischen Nebenprodukten konnten zum Teil erhebliche Vitamin-A-Gehalte festgestellt werden. Bei alleiniger Verfütterung eines dieser Produkte (Deckung des durchschnittlichen Energiebedarfs) würde die Vitamin-A-Versorgung nur knapp unter dem Safe Upper Limit der Katze sowie oberhalb des Safe Upper Limits beim Hund liegen.Bei All-Meat-Produkten sollte nicht nur die Deklaration, sondern auch der Inhalt näher betrachtet werden, um einen Hinweis auf eventuell hohe Leberanteile zu erhalten.Aufgrund der Ergebnisse ist eine exzessive Vitamin-A-Aufnahme bei langfristiger Verfütterung von Pferdefleischprodukten mit hohen Leberanteilen nicht auszuschließen.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Cortina Gil ◽  
◽  
A. Kleimenova ◽  
E. Minucci ◽  
S. Padolski ◽  
...  

Abstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew O. Clarkson ◽  
Timothy M. Lenton ◽  
Morten B. Andersen ◽  
Marie-Laure Bagard ◽  
Alexander J. Dickson ◽  
...  

AbstractThe Paleocene Eocene Thermal Maximum (PETM) represents a major carbon cycle and climate perturbation that was associated with ocean de-oxygenation, in a qualitatively similar manner to the more extensive Mesozoic Oceanic Anoxic Events. Although indicators of ocean de-oxygenation are common for the PETM, and linked to biotic turnover, the global extent and temporal progression of de-oxygenation is poorly constrained. Here we present carbonate associated uranium isotope data for the PETM. A lack of resolvable perturbation to the U-cycle during the event suggests a limited expansion of seafloor anoxia on a global scale. We use this result, in conjunction with a biogeochemical model, to set an upper limit on the extent of global seafloor de-oxygenation. The model suggests that the new U isotope data, whilst also being consistent with plausible carbon emission scenarios and observations of carbon cycle recovery, permit a maximum ~10-fold expansion of anoxia, covering <2% of seafloor area.


2018 ◽  
Vol 618 ◽  
pp. A136 ◽  
Author(s):  
E. Vilenius ◽  
J. Stansberry ◽  
T. Müller ◽  
M. Mueller ◽  
C. Kiss ◽  
...  

Context. A group of trans-Neptunian objects (TNOs) are dynamically related to the dwarf planet 136108 Haumea. Ten of them show strong indications of water ice on their surfaces, are assumed to have resulted from a collision, and are accepted as the only known TNO collisional family. Nineteen other dynamically similar objects lack water ice absorptions and are hypothesized to be dynamical interlopers. Aims. We have made observations to determine sizes and geometric albedos of six of the accepted Haumea family members and one dynamical interloper. Ten other dynamical interlopers have been measured by previous works. We compare the individual and statistical properties of the family members and interlopers, examining the size and albedo distributions of both groups. We also examine implications for the total mass of the family and their ejection velocities. Methods. We use far-infrared space-based telescopes to observe the target TNOs near their thermal peak and combine these data with optical magnitudes to derive sizes and albedos using radiometric techniques. Using measured and inferred sizes together with ejection velocities, we determine the power-law slope of ejection velocity as a function of effective diameter. Results. The detected Haumea family members have a diversity of geometric albedos ~0.3–0.8, which are higher than geometric albedos of dynamically similar objects without water ice. The median geometric albedo for accepted family members is pV = 0.48−0.18+0.28, compared to 0.08−0.05+0.07 for the dynamical interlopers. In the size range D = 175−300 km, the slope of the cumulative size distribution is q = 3.2−0.4+0.7 for accepted family members, steeper than the q = 2.0 ± 0.6 slope for the dynamical interlopers with D < 500 km. The total mass of Haumea’s moons and family members is 2.4% of Haumea’s mass. The ejection velocities required to emplace them on their current orbits show a dependence on diameter, with a power-law slope of 0.21–0.50.


2018 ◽  
Vol 18 (19) ◽  
pp. 14005-14015 ◽  
Author(s):  
Terry J. Dillon ◽  
John N. Crowley

Abstract. Pulsed laser excitation of NO2 (532–647 nm) or NO3 (623–662 nm) in the presence of H2O was used to initiate the gas-phase reaction NO2∗+H2O → products (Reaction R5) and NO3∗+H2O → products (Reaction R12). No evidence for OH production in Reactions (R5) or (R12) was observed and upper limits for OH production of k5b/k5<1×10-5 and k12b/k12<0.03 were assigned. The upper limit for k5b∕k5 renders this reaction insignificant as a source of OH in the atmosphere and extends the studies (Crowley and Carl, 1997; Carr et al., 2009; Amedro et al., 2011) which demonstrate that the previously reported large OH yield by Li et al. (2008) was erroneous. The upper limit obtained for k12b∕k12 indicates that non-reactive energy transfer is the dominant mechanism for Reaction (R12), though generation of small but significant amounts of atmospheric HOx and HONO cannot be ruled out. In the course of this work, rate coefficients for overall removal of NO3∗ by N2 (Reaction R10) and by H2O (Reaction R12) were determined: k10=(2.1±0.1)×10-11 cm3 molecule−1 s−1 and k12=(1.6±0.3)×10-10 cm3 molecule−1 s−1. Our value of k12 is more than a factor of 4 smaller than the single previously reported value.


Sign in / Sign up

Export Citation Format

Share Document