scholarly journals The Gaia-ESO Survey: detection and characterisation of single-line spectroscopic binaries

2020 ◽  
Vol 635 ◽  
pp. A155 ◽  
Author(s):  
T. Merle ◽  
M. Van der Swaelmen ◽  
S. Van Eck ◽  
A. Jorissen ◽  
R. J. Jackson ◽  
...  

Context. Multiple stellar systems play a fundamental role in the formation and evolution of stellar populations in galaxies. Recent and ongoing large ground-based multi-object spectroscopic surveys significantly increase the sample of spectroscopic binaries (SBs) allowing analyses of their statistical properties. Aims. We investigate the repeated spectral observations of the Gaia-ESO Survey internal data release 5 (GES iDR5) to identify and characterise SBs with one visible component (SB1s) in fields covering mainly the discs, the bulge, the CoRot fields, and some stellar clusters and associations. Methods. A statistical χ2-test is performed on spectra of the iDR5 subsample of approximately 43 500 stars characterised by at least two observations and a signal-to-noise ratio larger than three. In the GES iDR5, most stars have four observations generally split into two epochs. A careful estimation of the radial velocity (RV) uncertainties is performed. Our sample of RV variables is cleaned from contamination by pulsation- and/or convection-induced variables using Gaia DR2 parallaxes and photometry. Monte-Carlo simulations using the SB9 catalogue of spectroscopic orbits allow to estimate our detection efficiency and to correct the SB1 rate to evaluate the GES SB1 binary fraction and its relation to effective temperature and metallicity. Results. We find 641 (resp., 803) FGK SB1 candidates at the 5σ (resp., 3σ) level. The maximum RV differences range from 2.2 km s−1 at the 5σ confidence level (1.6 km s−1 at 3σ) to 133 km s−1 (in both cases). Among them a quarter of the primaries are giant stars and can be located as far as 10 kpc. The orbital-period distribution is estimated from the RV standard-deviation distribution and reveals that the detected SB1s probe binaries with log P[d] ⪅ 4. We show that SB1s with dwarf primaries tend to have shorter orbital periods than SB1s with giant primaries. This is consistent with binary interactions removing shorter period systems as the primary ascends the red giant branch. For two systems, tentative orbital solutions with periods of 4 and 6 d are provided. After correcting for detection efficiency, selection biases, and the present-day mass function, we estimate the global GES SB1 fraction to be in the range 7–14% with a typical uncertainty of 4%. A small increase of the SB1 frequency is observed from K- towards F-type stars, in agreement with previous studies. The GES SB1 frequency decreases with metallicity at a rate of (−9 ± 3)% dex−1 in the metallicity range −2.7 ≤ [Fe/H] ≤ +0.6. This anticorrelation is obtained with a confidence level higher than 93% on a homogeneous sample covering spectral types FGK and a large range of metallicities. When the present-day mass function is accounted for, this rate turns to (−4 ± 2)% dex−1 with a confidence level higher than 88%. In addition we provide the variation of the SB1 fraction with metallicity separately for F, G, and K spectral types, as well as for dwarf and giant primaries.

1989 ◽  
Vol 106 ◽  
pp. 223-223
Author(s):  
H.M.J. Boffin

Ba II stars are red giants showing an enhancement of carbon and s-process elements. The elucidation of their nature seems to require a mass transfer, either by wind or Roche lobe overflow, during their past evolution. Were it really the case, all Ba II stars would be binaries with a white dwarf as companion. To better understand the exact role of their binarity, more orbits are definitely needed. They can be obtained by monitoring the radial velocity variations of those stars. However, a quicker way to find new Ba II stars with orbital elements would be to search for their existence among known spectroscopic binaries. This would also crucially test whether mass transfer is a necessary and sufficient condition to explain Ba II stars. If it is indeed the case, then all spectroscopic binaries, made of a giant and a white dwarf, in a reasonable range of periods, would exhibit the Ba II pecularity. However, the discovery of a peculiar giant+main sequence binary system would imply a revision of our ideas about Ba II stars. To this end have we begun a systematic spectral survey of spectroscopic binaries with orbital periods in the range characteristic of known Ba II stars and containing a red giant. The realization that some stars of the catalogue we compiled were already identified as semibariium stars encourages us to pursue our investigation. Coude spectra were taken with the 152 cm telescope, at a dispersion of 12 Å mm−1 . Until now, 2 stars out of a sample of 31 present a slight enhancement of s-process elements (their anomaly being in the range Ba 0.3 to 0.5), and 2 more appear to be good candidates. The study of a larger sample is currently in progress. A discussion of the nature of the companion to the 2 newly discovered semibarium stars is presented on grounds of their mass function and photometric indices.


2017 ◽  
Vol 13 (S334) ◽  
pp. 147-152
Author(s):  
Arlette Noels-Grötsch

AbstractAlthough a stellar age accuracy of about 10 % seems to be a reasonable requirement to draw a time line in the evolution of our Galaxy as well as in the formation and evolution of exo-planetary systems, theoretical stellar models are at present still too imperfect to really achieve this goal. Asteroseismic observations are definitely of invaluable assistance, especially if individual pulsation frequencies are available, which is still far from common. Large stellar samples are now in the spotlight with two different lines of attack, spectroscopic and photometric surveys as well as asteroseismic missions. I shall review the problems arising from stellar physics in the context of large stellar samples of main sequence and red giant stars, and I shall raise some alarm bells but also highlight some positive news for a drastic improvement in stellar age determinations below the limit of 10 % in a foreseeable future.


2019 ◽  
Vol 490 (2) ◽  
pp. 1821-1842 ◽  
Author(s):  
L Casamiquela ◽  
S Blanco-Cuaresma ◽  
R Carrera ◽  
L Balaguer-Núñez ◽  
C Jordi ◽  
...  

ABSTRACT The study of open-cluster chemical abundances provides insights on stellar nucleosynthesis processes and on Galactic chemo-dynamical evolution. In this paper we present an extended abundance analysis of 10 species (Fe, Ni, Cr, V, Sc, Si, Ca, Ti, Mg, O) for red giant stars in 18 OCCASO clusters. This represents a homogeneous sample regarding the instrument features, method, line list and solar abundances from confirmed member stars. We perform an extensive comparison with previous results in the literature, and in particular with the Gaia FGK Benchmark stars Arcturus and $\mu$-Leo. We investigate the dependence of [X/Fe] with metallicity, Galactocentric radius (6.5 kpc < RGC < 11 kpc), age (0.3 Gyr < Age < 10 Gyr), and height above the plane (|z| < 1000 pc). We discuss the observational results in the chemo-dynamical framework, and the radial migration impact when comparing with chemical evolution models. We also use APOGEE DR14 data to investigate the differences between the abundance trends in RGC and |z| obtained for clusters and for field stars.


2022 ◽  
Vol 21 (12) ◽  
pp. 319
Author(s):  
Ruo-Yi Zhang ◽  
Hai-Bo Yuan ◽  
Xiao-Wei Liu ◽  
Mao-Sheng Xiang ◽  
Yang Huang ◽  
...  

Abstract In the fourth paper of this series, we present the metallicity-dependent Sloan Digital Sky Survey (SDSS) stellar color loci of red giant stars, using a spectroscopic sample of red giants in the SDSS Stripe 82 region. The stars span a range of 0.55 – 1.2 mag in color g – i, –0.3 – –2.5 in metallicity [Fe/H], and have values of surface gravity log g smaller than 3.5 dex. As in the case of main-sequence (MS) stars, the intrinsic widths of loci of red giants are also found to be quite narrow, a few mmag at maximum. There are however systematic differences between the metallicity-dependent stellar loci of red giants and MS stars. The colors of red giants are less sensitive to metallicity than those of MS stars. With good photometry, photometric metallicities of red giants can be reliably determined by fitting the u – g, g – r, r – i, and i – z colors simultaneously to an accuracy of 0.2 – 0.25 dex, comparable to the precision achievable with low-resolution spectroscopy for a signal-to-noise ratio of 10. By comparing fitting results to the stellar loci of red giants and MS stars, we propose a new technique to discriminate between red giants and MS stars based on the SDSS photometry. The technique achieves completeness of ∼70 per cent and efficiency of ∼80 per cent in selecting metal-poor red giant stars of [Fe/H] ≤ –1.2. It thus provides an important tool to probe the structure and assemblage history of the Galactic halo using red giant stars.


2004 ◽  
Vol 202 ◽  
pp. 12-19 ◽  
Author(s):  
S. Udry ◽  
M. Mayor ◽  
D. Queloz

6 new extra-solar planet candidates (HD 6434 b, HD 19994 b, HD 83443c, HD 92788b, HD 121504b, HD 190228b) are announced as part of our planet-search programmes in the northern and southern hemispheres. HD 83443 c is member of a 2-planet system with Saturnian and sub-Saturnian masses. Another system including a planet + a very low-mass brown dwarf orbiting HD 168443 is also presented. These 2 new systems and the new planetary detections rise to 25 the number of ELODIE and CORALIE candidates with minimum masses ≤20MJup. The orbital element distributions of giant-planet candidates, like the secondary mass function, the eccentricity and period distributions, compared to the equivalent distributions for spectroscopic binaries, strongly suggest different formation mechanisms for the two populations.


2019 ◽  
Vol 624 ◽  
pp. A18 ◽  
Author(s):  
Andreas Quirrenbach ◽  
Trifon Trifonov ◽  
Man Hoi Lee ◽  
Sabine Reffert

We present radial-velocity (RV) measurements for the K giant ν Oph (= HIP 88048, HD 163917, HR 6698), which reveal two brown dwarf companions with a period ratio close to 6:1. For our orbital analysis we use 150 precise RV measurements taken at the Lick Observatory between 2000 and 2011, and we combine them with RV data for this star available in the literature. Using a stellar mass of M = 2.7M⊙ for ν Oph and applying a self-consistent N-body model we estimate the minimum dynamical companion masses to be m1 sin i ≈ 22.2 MJup and m2 sin i ≈ 24.7 MJup, with orbital periods P1 ≈ 530 d and P2 ≈ 3185 d. We study a large set of potential orbital configurations for this system, employing a bootstrap analysis and a systematic χν2 grid-search coupled with our dynamical fitting model, and we examine their long-term stability. We find that the system is indeed locked in a 6:1 mean motion resonance (MMR), with Δω and all six resonance angles θ1–θ6 librating around 0°. We also test a large set of coplanar inclined configurations, and we find that the system will remain in a stable resonance for most of these configurations. The ν Oph system is important for probing planetary formation and evolution scenarios. It seems very likely that the two brown dwarf companions of ν Oph formed like planets in a circumstellar disk around the star and have been trapped in an MMR by smooth migration capture.


2020 ◽  
Vol 644 ◽  
pp. A1
Author(s):  
Marcelo Tala Pinto ◽  
Sabine Reffert ◽  
Andreas Quirrenbach ◽  
Stephan Stock ◽  
Trifon Trifonov ◽  
...  

Context. More than 100 exoplanets have been discovered around K and G giant stars, and their properties differ considerably from those of the planets found orbiting Sun-like and late-type main-sequence stars. This allows us to study the properties of planetary systems after the host star has evolved off the main-sequence, and it helps us to constrain planetary formation and evolution models. Aims. Our aim is to find out whether the long-period radial velocity variations observed in four giant stars of the Lick survey are caused by orbiting planets, and to study the properties of the planet population as a function of the stellar evolutionary stage. Methods. We analyzed 12 yr of precise radial velocity data for four stars of the Lick sample. In addition, we compared the planet frequency as a function of the evolutionary stage for two surveys, Lick and Express, based on the evolutionary stages derived using Bayesian inference. Results. We report the discovery of two new exoplanets and three exoplanet candidates orbiting giant stars. The best Keplerian fits to the data yield minimum masses of 2.5 MJ and 4.3 MJ for the planets orbiting HD 25723 and 17 Sco, respectively. The minimum masses of an additional candidate around HD 25723, and of planet candidates around 3 Cnc and 44 UMa, would be 1.3 MJ, 20.7 MJ, and 12.1 MJ, respectively. In addition, we compute planet frequencies for the Lick and Express samples as a function of the evolutionary stage. Within each sample, the planet frequency for the horizontal branch stars is the same as for the red giant branch stars. Conclusions. We have discovered two new exoplanets and three new exoplanet candidates, one of them being the second planet in a possible multi-planetary system. Based on our derived planet frequencies, we conclude that stellar evolution does not affect the number of observable planets between the red-giant and horizontal-branch evolutionary stages.


1998 ◽  
Vol 116 (2) ◽  
pp. 707-722 ◽  
Author(s):  
David B. Reitzel ◽  
Puragra Guhathakurta ◽  
Andrew Gould

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaetano Frascella ◽  
Sascha Agne ◽  
Farid Ya. Khalili ◽  
Maria V. Chekhova

AbstractAmong the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to considerably increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular, squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6 dB. Sub-shot-noise phase sensitivity survives up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum resources in these fields.


Author(s):  
Wenjun Huo ◽  
Peng Chu ◽  
Kai Wang ◽  
Liangting Fu ◽  
Zhigang Niu ◽  
...  

In order to study the detection methods of weak transient electromagnetic radiation signals, a detection algorithm integrating generalized cross-correlation and chaotic sequence prediction is proposed in this paper. Based on the dual-antenna test and cross-correlation information estimation method, the detection of aperiodic weak discharge signals under low signal-to-noise ratio is transformed into the estimation of periodic delay parameters, and the noise is reduced at the same time. The feasibility of this method is verified by simulation and experimental analysis. The results show that under the condition of low signal-to-noise ratio, the integrated method can effectively suppress the influence of 10 noise disturbances. It has a high detection probability for weak transient electromagnetic radiation signals, and needs fewer pulse accumulation times, which improves the detection efficiency and is more suitable for long-distance detection of weak electromagnetic radiation sources.


Sign in / Sign up

Export Citation Format

Share Document