scholarly journals Stellar laboratories

2020 ◽  
Vol 637 ◽  
pp. A4
Author(s):  
T. Rauch ◽  
S. Gamrath ◽  
P. Quinet ◽  
M. Demleitner ◽  
M. Knörzer ◽  
...  

Context. Accurate atomic data is an essential ingredient for the calculation of reliable non-local thermodynamic equilibrium (NLTE) model atmospheres that are mandatory for the spectral analysis of hot stars. Aims. We aim to search for and identify for the first time spectral lines of copper (atomic number Z = 29) and indium (Z = 49) in hot white dwarf (WD) stars and to subsequently determine their photospheric abundances. Methods. Oscillator strengths of Cu IV–VII were calculated to include radiative and collisional bound-bound transitions of Cu in our NLTE model-atmosphere calculations. Oscillator strengths of In IV - VI were compiled from the literature. Results. We newly identified 1 Cu IV, 51 Cu V, 2 Cu VI, and 5 In V lines in the ultraviolet (UV) spectrum of DO-type WD RE 0503−289. We determined the photospheric abundances of 9.3 × 10−5 (mass fraction, 132 times solar) and 3.0 × 10−5 (56 600 times solar), respectively; we also found Cu overabundances in the DA-type WD G191−B2B (6.3 × 10−6, 9 times solar). Conclusions. All identified Cu IV-VI lines in the UV spectrum of RE 0503−289 were simultaneously well reproduced with our newly calculated oscillator strengths. With the detection of Cu and In in RE 0503−289, the total number of trans-iron elements (Z > 28) in this extraordinary WD reaches an unprecedented number of 18.

2020 ◽  
Vol 496 (4) ◽  
pp. 5361-5371
Author(s):  
Abdelrazek M K Shaltout ◽  
Ali G A Abdelkawy ◽  
M M Beheary

ABSTRACT Determinations of the solar abundance of praseodymium (Pr) depend critically on the local thermodynamical equilibrium (LTE) and non-local thermodynamical equilibrium (NLTE) techniques beyond the capabilities of a classical one-dimensional model atmosphere. Here, in this analysis, we adopt an atomic model atom of Pr consisting of 105 energy levels and 14 bound–bound transitions of singly ionized praseodymium (Pr ii) and the ground state of the Pr iii continuum limit. We briefly analyse the solar abundance of Pr taking the solar model atmospheres of Holweger & Müller (1974, Solar Physics, 39, 19) with the measured equivalent linewidths and invoking a microturbulent velocity treatment. We succeed in accurately selecting nearby clear sections of the spectrum for 14 spectral lines of Pr ii with the improved atomic data of high-quality oscillator strengths available from the laboratory measurements of several possible sources as well as accurate damping constants successfully determined from the literature. We find a Pr abundance revised to be downwards log ϵPr(NLTE) = 0.75 ± 0.09, which is in good agreement with the meteoritic value (log ϵPr = 0.76 ± 0.03). A comparison of the NLTE abundance corrections with the standard LTE analysis, log ϵPr(LTE) = 0.74 ± 0.08, reveals a positive correction of  +0.01 dex, estimated from the selected solar Pr ii lines. The Pr abundance value is clearly superior following the classical one-dimensional model atmospheres of Holweger & Müller, the absolute scales of gf-values, the microturbulent velocity and the adopted equivalent linewidths.


2020 ◽  
Vol 493 (4) ◽  
pp. 6095-6108 ◽  
Author(s):  
Lyudmila Mashonkina

ABSTRACT A comprehensive model atom was developed for Si i–ii–iii using the most up-to-date atomic data available so far. Based on non-local thermodynamic equilibrium (NLTE) line formation for Si i, Si ii and Si iii and high-resolution observed spectra, we determined the NLTE abundances for a sample of nine unevolved A9–B3 type stars with well-determined atmospheric parameters. For each star, NLTE reduces the line-to-line scatter for Si ii substantially compared with the LTE case and leads to consistent mean abundances from lines of different ionization stages. In the hottest star of our sample, ι Her, Si ii is subject to overionization that drives emission in the lines arising from the high-excitation doublet levels. Our NLTE calculations reproduced 10 emission lines of Si ii observed in ι Her. The same overionization effect leads to greatly weakened Si ii lines, which are observed in absorption in ι Her. Large positive NLTE abundance corrections (up to 0.98 dex for 5055 Å) were useful for achieving consistent mean abundances from lines of the two ionization stages, Si ii and Si iii. It was found that NLTE effects are overestimated for the Si ii 6347, 6371 Å doublet in ι Her, while the new model atom works well for cooler stars. At this stage, we failed to understand this problem. We computed a grid of the NLTE abundance corrections for lines of Si i, Si ii and Si iii in model atmospheres with effective temperatures and surface gravities characteristic of unevolved A–B type stars.


2011 ◽  
Vol 89 (4) ◽  
pp. 327-331 ◽  
Author(s):  
N. Grevesse ◽  
M. Asplund ◽  
A.J. Sauval ◽  
P. Scott

We have very recently re-determined the abundances of nearly all the available chemical elements in the solar photosphere, from lithium to thorium (Asplund et al. Annu. Rev. Astron. Astrophys. 47, 481 (2009)). This new complete and homogeneous analysis results from a very careful selection of spectral lines of all the indicators of the abundances present in the solar photospheric spectrum, from a discussion of the atomic and molecular data, and from an analysis of these lines based on a new 3D model of the solar outer layers, taking non-LTE effects into account when possible. We present these new results, compare them with other recent solar data as well as with recent results for the solar neighborhood, and discuss some of their most important implications as well as some of the atomic data we still urgently need.


2020 ◽  
Vol 497 (1) ◽  
pp. 67-80 ◽  
Author(s):  
L Löbling

ABSTRACT Subdwarf B (sdB) stars are core helium-burning stars with stratified atmospheres. Their atmospheres are dominated by hydrogen (H) while the helium (He) and metal abundances are shaped by an interplay of gravitational settling and radiative levitation. However, a small fraction of these show spectra dominated by He i absorption lines. In between these groups of He-deficient and extreme He-rich sdBs, some are found to have intermediate surface He abundances. These objects are proposed to be young ‘normal’ (He-deficient) sdBs for which the dynamical stratification of the atmosphere is still ongoing. We present an analysis of the optical spectrum of such an intermediate He-rich sdB, namely CPD−20°1123, by means of non-local thermodynamic equilibrium (NLTE) stellar atmosphere models. It has a He-to-H number ratio of He/H = 0.13 ± 0.05 and its effective temperature of $\mbox{$T_\mathrm{eff}$} = 25\, 500 \pm 1000 \, \mathrm{K}$ together with a surface gravity of $\log \, (g$ / cm s−2) = 5.3 ± 0.3 places the star close to the high-temperature edge until which it may be justified to use LTE model atmospheres. This work states a test of the Tübingen NLTE Model Atmosphere Package for this temperature regime. We present the first application of revised, elaborated model atoms of low ionization stages of light metals usable with this atmosphere code.


1995 ◽  
Vol 10 ◽  
pp. 585-587
Author(s):  
Keith Butler

In this paper I review some recent advances in the use of large amounts of atomic data in the modelling of atmospheres and winds of hot stars. The review is highly selective but representative of current developments. A more general overview is to be found in Kudritzki and Hummer (1990) although the field is changing so rapidly that much has happened since then. The paper breaks down into three parts: work on line formation, in which the atmospheric structure is known and held fixed, is described first, then follows a description of the inclusion of line opacities in non-LTE in the atmosphere problem itself, and finally recent developments in the theory of radiatively driven stellar winds are summarized. Here special emphasis is given to a novel distance determination method based entirely on spectroscopie quantities. I close with a brief shopping list.In a series of papers, Becker and Butler (1992,1994a, b,c) have investigated iron and nickel spectra in sub-dwarfs using the complete linearization method of Auer and Heasley (1976). The method scales linearly with the number of frequency points so they were able to use well over 10000 frequencies to adequately describe the line opacities. Several thousand lines were treated explicitly and the resultant computed spectra gave execellent fits to observed Hubble spectra in the wavelength ranges dominated by the ions concerned.The different ionization stages gave consistent results for the iron and nickel abundances but only after line-blocking from millions of spectral lines in the far UV had been included. This was done using the Kurucz (1988) line lists coupled with line grouping as suggested by Anderson (1989) and described briefly in the next section.The line-blanketed atmospheres of Kurucz (1991) are the best available up to about 30000K, where non-LTE effects start to become important. Non-LTE line-blanketed atmospheres have become feasible because the computational requirements of the accelerated lambda iteration (ALI) method (Werner and Husfeld, 1985) also scale linearly with the number of frequency points. On the other hand, Anderson (1989) suggested grouping energetically adjacent atomic levels together to form pseudo-levels on the basis that although they might, as a group, be in non-LTE, they should be in LTE with respect to one another due to the large number of collisions between them. This greatly reduces the number of levels to be considered but instead gives rise to highly complicated pseudo line-profiles. Grigsby et al (1992), who did not use ALI, constructed the first grid of line-blanketed non-LTE models by using a variation on the Opacity Distribution Function concept to group line opacities into blocks thereby reducing the number of frequency points required. Dreizler and Werner (1993) on the other hand were able to sample the opacity as they used ALI in their models.


2020 ◽  
Vol 501 (1) ◽  
pp. 36-49
Author(s):  
K P Singh ◽  
V Girish ◽  
M Pavana ◽  
Jan-Uwe Ness ◽  
G C Anupama ◽  
...  

ABSTRACT Two long AstroSat Soft X-ray Telescope observations were taken of the third recorded outburst of the symbiotic recurrent nova V3890 Sgr. The first observing run, 8.1–9.9 d after the outburst, initially showed a stable intensity level with a hard X-ray spectrum that we attribute to shocks between the nova ejecta and the pre-existing stellar companion. On day 8.57, the first, weak, signs appeared of supersoft source (SSS) emission powered by residual burning on the surface of the white dwarf. The SSS emission was observed to be highly variable on time-scales of hours. After day 8.9, the SSS component was more stable and brighter. In the second observing run, on days 15.9–19.6 after the outburst, the SSS component was even brighter but still highly variable. The SSS emission was observed to fade significantly during days 16.8–17.8 followed by re-brightening. Meanwhile, the shock component was stable, leading to increase in hardness ratio during the period of fading. AstroSat and XMM–Newton observations have been used to study the spectral properties of V3890 Sgr to draw quantitative conclusions even if their drawback is model dependent. We used the xspec to fit spectral models of plasma emission, and the best fits are consistent with the elemental abundances being lower during the second observing run compared to the first for spectra ≥1 keV. The SSS emission is well fitted by non-local thermal equilibrium model atmosphere used for white dwarfs. The resulting spectral parameters, however, are subject to systematic uncertainties such as completeness of atomic data.


2019 ◽  
Vol 624 ◽  
pp. A60 ◽  
Author(s):  
M. Laverick ◽  
A. Lobel ◽  
P. Royer ◽  
T. Merle ◽  
C. Martayan ◽  
...  

Context. Fundamental atomic transition parameters, such as oscillator strengths and rest wavelengths, play a key role in modelling and understanding the chemical composition of stars in the universe. Despite the significant work under way to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can limit the accuracy of chemical abundance determinations.Aims. The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide a large systematic and homogeneous quality assessment of the atomic data available for quantitative spectroscopy. BRASS shall compare synthetic spectra against extremely high-quality observed spectra, at a resolution of ∼85 000 and signal-noise ratios of ∼1000, for approximately 20 bright BAFGK spectral-type stars, in order to critically evaluate the atomic data available for over a thousand potentially useful spectral lines.Methods. A large-scale homogeneous selection of atomic lines is performed by synthesising theoretical spectra of literature atomic lines for FGK-type stars including the Sun, resulting in a selection of 1091 theoretically deep and unblended lines in the wavelength range 4200–6800 Å, which may be suitable for quality assessment. Astrophysical log(g f) values are determined for the 1091 transitions using two commonly employed methods. The agreement of these log(g f) values are used to select well-behaved lines for quality assessment.Results. We found 845 atomic lines to be suitable for quality assessment, of which 408 were found to be robust against systematic differences between analysis methods. Around 53% of the quality-assessed lines were found to have at least one literature log(g f) value in agreement with our derived values, though the remaining values can disagree by as much as 0.5 dex. Only ∼38% of Fe Ilines were found to have sufficiently accurate log(g f) values, increasing to ∼70–75% for the remaining Fe-group lines.


1994 ◽  
Vol 47 (3) ◽  
pp. 329 ◽  
Author(s):  
RA Lewis ◽  
P Fisher ◽  
NA McLean

The P3/2 optical absorption spectrum of boron impurity in silicon has been re-examined at high resolution. The precise transition energies measured agree with energies previously reported. In addition, energies for several previously unrecognised transitions are given as well as values for the absorption strengths and line widths. The measured transition energies and absorption strengths correlate very well with several recent calculations of binding energies and oscillator strengths, respectively. This excellent agreement between experiment and theory motivates a renumbering of the spectral lines which is not expected to require future modification. High-resolution piezospectroscopy of the P3/2 series has also been undertaken. Small stresses were used to minimise the effect of interactions and permit accurate determination of the deformation potential constants. The deformation potential constants are found to be in fair agreement with previous experimental values and good agreement with recent theory. Experimental values for several of these are given for the first time, as are isotropic deformation potential constants of several excited states relative to the ground state.


2020 ◽  
Vol 641 ◽  
pp. A47 ◽  
Author(s):  
M. E. Young ◽  
L. Fossati ◽  
T. T. Koskinen ◽  
M. Salz ◽  
P. E. Cubillos ◽  
...  

Context. Exoplanetary upper atmospheres are low density environments where radiative processes can compete with collisional ones and introduce non-local thermodynamic equilibrium (NLTE) effects into transmission spectra. Aims. We develop a NLTE radiative transfer framework capable of modelling exoplanetary transmission spectra over a wide range of planetary properties. Methods. We adapted the NLTE spectral synthesis code Cloudy to produce an atmospheric structure and atomic transmission spectrum in both NLTE and local thermodynamic equilibrium (LTE) for the hot Jupiter HD 209458b, given a published T–P profile and assuming solar metallicity. Selected spectral features, including Hα, NaI D, HeI λ10 830, FeI and II ultra-violet (UV) bands, and C, O, and Si UV lines, are compared with literature observations and models where available. The strength of NLTE effects are measured for individual spectral lines to identify which features are most strongly affected. Results. The developed modelling framework that computes NLTE synthetic spectra reproduces literature results for the HeI λ10 830 triplet, the NaI D lines, and the forest of FeI lines in the optical. Individual spectral lines in the NLTE spectrum exhibit up to 40% stronger absorption relative to the LTE spectrum.


2018 ◽  
Vol 612 ◽  
pp. A60 ◽  
Author(s):  
M. Laverick ◽  
A. Lobel ◽  
T. Merle ◽  
P. Royer ◽  
C. Martayan ◽  
...  

Context. Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the Universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. Aims. The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. In a second step synthetic spectra will be compared against extremely high-quality observed spectra, for a large number of BAFGK spectral type stars, in order to critically evaluate the atomic data of a large number of important stellar lines. Methods. Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a new non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. Results. We report on the number of cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that ~2% of our line list and Vienna atomic line database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different retrieved literature log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document