scholarly journals Electron conduction opacities at the transition between moderate and strong degeneracy: Uncertainties and impacts on stellar models

Author(s):  
S. Cassisi ◽  
A. Y. Potekhin ◽  
M. Salaris ◽  
A. Pietrinferni
2007 ◽  
Vol 661 (2) ◽  
pp. 1094-1104 ◽  
Author(s):  
S. Cassisi ◽  
A. Y. Potekhin ◽  
A. Pietrinferni ◽  
M. Catelan ◽  
M. Salaris

Author(s):  
Nathan J Yutronkie ◽  
Benjamin King ◽  
Owen Alfred Melville ◽  
Benoit Hugo Lessard ◽  
Jaclyn L Brusso

The perfluorinated analogue of silicon phthalocyanine (F2-F16SiPc) has been synthesized as a novel air-stable n-type organic semiconductor. The design of F2-F16SiPc facilitates strong electron conduction through peripheral fluorination that deepens...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Ziqi Wang ◽  
Liubing Dong ◽  
Weiyuan Huang ◽  
Hao Jia ◽  
Qinghe Zhao ◽  
...  

AbstractOwing to the merits of low cost, high safety and environmental benignity, rechargeable aqueous Zn-based batteries (ZBs) have gained tremendous attention in recent years. Nevertheless, the poor reversibility of Zn anodes that originates from dendrite growth, surface passivation and corrosion, severely hinders the further development of ZBs. To tackle these issues, here we report a Janus separator based on a Zn-ion conductive metal–organic framework (MOF) and reduced graphene oxide (rGO), which is able to regulate uniform Zn2+ flux and electron conduction simultaneously during battery operation. Facilitated by the MOF/rGO bifunctional interlayers, the Zn anodes demonstrate stable plating/stripping behavior (over 500 h at 1 mA cm−2), high Coulombic efficiency (99.2% at 2 mA cm−2 after 100 cycles) and reduced redox barrier. Moreover, it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface. Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells, which deliver nearly 100% capacity retention after 2000 cycles at 4 A g−1 and high power density over 10 kW kg−1. This work provides a feasible route to the high-performance Zn anodes for ZBs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 657
Author(s):  
Geul Han Kim ◽  
Yoo Sei Park ◽  
Juchan Yang ◽  
Myeong Je Jang ◽  
Jaehoon Jeong ◽  
...  

Developing high performance, highly stable, and low-cost electrodes for the oxygen evolution reaction (OER) is challenging in water electrolysis technology. However, Ir- and Ru-based OER catalysts with high OER efficiency are difficult to commercialize as precious metal-based catalysts. Therefore, the study of OER catalysts, which are replaced by non-precious metals and have high activity and stability, are necessary. In this study, a copper–cobalt oxide nanosheet (CCO) electrode was synthesized by the electrodeposition of copper–cobalt hydroxide (CCOH) on Ni foam followed by annealing. The CCOH was annealed at various temperatures, and the structure changed to that of CCO at temperatures above 250 °C. In addition, it was observed that the nanosheets agglomerated when annealed at 300 °C. The CCO electrode annealed at 250 °C had a high surface area and efficient electron conduction pathways as a result of the direct growth on the Ni foam. Thus, the prepared CCO electrode exhibited enhanced OER activity (1.6 V at 261 mA/cm2) compared to those of CCOH (1.6 V at 144 mA/cm2), Co3O4 (1.6 V at 39 mA/cm2), and commercial IrO2 (1.6 V at 14 mA/cm2) electrodes. The optimized catalyst also showed high activity and stability under high pH conditions, demonstrating its potential as a low cost, highly efficient OER electrode material.


2019 ◽  
Vol 489 (3) ◽  
pp. 3149-3161 ◽  
Author(s):  
Emily Sandford ◽  
Néstor Espinoza ◽  
Rafael Brahm ◽  
Andrés Jordán

ABSTRACT When a planet is only observed to transit once, direct measurement of its period is impossible. It is possible, however, to constrain the periods of single transiters, and this is desirable as they are likely to represent the cold and far extremes of the planet population observed by any particular survey. Improving the accuracy with which the period of single transiters can be constrained is therefore critical to enhance the long-period planet yield of surveys. Here, we combine Gaia parallaxes with stellar models and broad-band photometry to estimate the stellar densities of K2 planet host stars, then use that stellar density information to model individual planet transits and infer the posterior period distribution. We show that the densities we infer are reliable by comparing with densities derived through asteroseismology, and apply our method to 27 validation planets of known (directly measured) period, treating each transit as if it were the only one, as well as to 12 true single transiters. When we treat eccentricity as a free parameter, we achieve a fractional period uncertainty over the true single transits of $94^{+87}_{-58}{{\ \rm per\ cent}}$, and when we fix e = 0, we achieve fractional period uncertainty $15^{+30}_{-6}{{\ \rm per\ cent}}$, a roughly threefold improvement over typical period uncertainties of previous studies.


1993 ◽  
Vol 137 ◽  
pp. 162-164 ◽  
Author(s):  
V. Wenske ◽  
D. Schönberner

For several years it has become quite common to derive stellar parameters like effective temperature, Teff, and surface acceleration, g, by means of properly calibrated photometric indices, and to use these values for the derivation of important properties of stellar aggregates (viz. ages, star formation history, distances, etc.). Photometric observations, however, fail to give informations about one important property of a star: its rotational rate!The main effect of rotation is to increase the size of the star, mainly in the equatorial region, leading to lower surface temperatures and accelerations. Since in non–spherical stars Teff and g depend on the latitude, the observed values, which are, of course, averages over the visible hemisphere, depend on the angle of inclination, i. Collins & Sonneborn (1977) utilized the rigidly rotating stellar models of Sackmann and Anand (1970) to compute emergent fluxes and photometric indices for various stellar masses, inclination angles i and rotational parameters being the break–up rotational rate. These indices, viz. C0 and β, represent then averages over the visible part of the rotally distorted stellar models. Closer inspections indicated also that emergent fluxes and line profiles of rotationally distorted stars can be matched by the predictations of standard model atmospheres to a very high accuray, even for w close to unity (Wenske 1992, Diplom Thesis).


2017 ◽  
Vol 86 (7) ◽  
pp. 074704 ◽  
Author(s):  
Wataru Namiki ◽  
Takashi Tsuchiya ◽  
Makoto Takayanagi ◽  
Shoto Furuichi ◽  
Makoto Minohara ◽  
...  

2006 ◽  
Vol 2 (S239) ◽  
pp. 157-159
Author(s):  
John Southworth ◽  
Hans Bruntt

AbstractThe fundamental properties of detached eclipsing binary stars can be measured very accurately, which could make them important objects for constraining the treatment of convection in theoretical stellar models. However, only four or five pieces of information can be found for the average system, which is not enough. We discuss studies of more interesting and useful objects: eclipsing binaries in clusters and eclipsing binaries with pulsating components.


Sign in / Sign up

Export Citation Format

Share Document