scholarly journals Chemical yields from low- and intermediate-mass stars: Model predictions and basic observational constraints

2001 ◽  
Vol 370 (1) ◽  
pp. 194-217 ◽  
Author(s):  
P. Marigo
2020 ◽  
Vol 493 (4) ◽  
pp. 4987-5004 ◽  
Author(s):  
George C Angelou ◽  
Earl P Bellinger ◽  
Saskia Hekker ◽  
Alexey Mints ◽  
Yvonne Elsworth ◽  
...  

ABSTRACT Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries, and single stars alike. We compute ‘effective overshoot’ measures that reflect the extent of mixing and which can differ significantly from the input overshoot values set in the stellar evolution codes. We use constraints from pressure modes to infer the CBM properties of Kepler and CoRoT main-sequence and subgiant oscillators, as well as in two radial velocity targets (Procyon A and α Cen A). Collectively, these targets allow us to identify how measurement precision, stellar spectral type, and overshoot implementation impact the asteroseismic solution. With these new measures, we find that the ‘effective overshoot’ for most stars is in line with physical expectations and calibrations from binaries and clusters. However, two F-stars in the CoRoT field (HD 49933 and HD 181906) still necessitate high overshoot in the models. Due to short mode lifetimes, mode identification can be difficult in these stars. We demonstrate that an incongruence between the radial and non-radial modes drives the asteroseismic solution to extreme structures with highly efficient CBM as an inevitable outcome. Understanding the cause of seemingly anomalous physics for such stars is vital for inferring accurate stellar parameters from TESS data with comparable timeseries length.


2004 ◽  
Vol 193 ◽  
pp. 489-497 ◽  
Author(s):  
Santi Cassisi

AbstractWe briefly review the main problems related to the computation of the evolution of intermediate-mass stars: the treatment of turbulent convection and the occurrence of blue loops during the core He-burning phase. It is shown that, in order to obtain more accurate and reliable stellar models for this class of stars, one has to consider all possible theoretical and observational constraints. These include observations of low-mass stars to constrain the treatment of envelope convection, and the analysis of the pulsational behaviour of Cepheid stars.


2011 ◽  
Vol 7 (S283) ◽  
pp. 386-387
Author(s):  
Liliana Hernández-Martínez ◽  
Leticia Carigi ◽  
Miriam Peña ◽  
Manuel Peimbert

AbstractWe present chemical evolution models for the dwarf irregular NGC 6822, using chemical abundances of Planetary Nebulae (PNe) and HII regions and also the mass of gas (Mgas) as observational constraints. Chemical evolution models have been calculated to reproduce the abundances as derived from both, collisionally excited lines (CELs) and recombination lines (RLs). In our models, the chemical contribution of low and intermediate mass stars (LIMS) is time delayed, while for the massive stars the chemical contribution is instantaneous, as in Franco & Carigi (2008). The chemical contribution of SNIa is included in our model, thus we are also able to reproduce the observational Fe/H abundance obtained from A stars.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 113
Author(s):  
Lars Mattsson ◽  
Christer Sandin

A significant fraction of new metals produced in stars enter the interstellar medium in the form of dust grains. Including dust and wind formation in stellar evolution models of late-stage low- and intermediate-mass stars provides a way to quantify their contribution to the cosmic dust component. In doing so, a correct physical description of dust formation is of course required, but also a reliable prescription for the mass-loss rate. Here, we present an improved model of dust-driven winds to be used in stellar evolution codes and insights from recent detailed numerical simulations of carbon-star winds including drift (decoupling of dust and gas). We also discuss future directions for further improvement.


2009 ◽  
Vol 5 (H15) ◽  
pp. 815-815
Author(s):  
Antonio S. Hales ◽  
Michael J. Barlow ◽  
Janet E. Drew ◽  
Yvonne C. Unruh ◽  
Robert Greimel ◽  
...  

AbstractThe Isaac Newton Photometric H-Alpha Survey (IPHAS) provides (r′-Hα)-(r′-i′) colors, which can be used to select AV0-5 Main Sequence star candidates (age~20-200 Myr). By combining a sample of 23050 IPHAS-selected A-type stars with 2MASS, GLIMPSE and MIPSGAL photometry we searched for mid-infrared excesses attributable to dusty circumstellar disks. Positional cross-correlation yielded a sample of 2692 A-type stars, of which 0.6% were found to have 8-μm excesses above the expected photospheric values. The low fraction of main sequence stars with mid-IR excesses found in this work indicates that dust disks in the terrestrial planet zone of Main Sequence intermediate mass stars are rare. Dissipation mechanisms such as photo-evaporation, grain growth, collisional grinding or planet formation could possibly explain the depletion of dust detected in the inner regions of these disks.


2021 ◽  
Vol 5 (4) ◽  
pp. 80
Author(s):  
Kirsten M. Abernathy ◽  
Andrea Banzatti ◽  
Stanley Jensen ◽  
Sean Brittain ◽  
Adwin Boogert ◽  
...  

2001 ◽  
Vol 366 (3) ◽  
pp. 873-890 ◽  
Author(s):  
A. Fuente ◽  
R. Neri ◽  
J. Martın-Pintado ◽  
R. Bachiller ◽  
A. Rodrıguez-Franco ◽  
...  

1993 ◽  
Vol 155 ◽  
pp. 340-340 ◽  
Author(s):  
R.E.S. Clegg ◽  
N. A. Walton ◽  
M.J. Barlow

It is not really known how low and intermediate mass stars eject mass to form PNs. We present preliminary results from a programme of near–IR imaging, in which we study a sequence of objects, from extreme AGB stars through proto–planetaries to young, compact PNs. We aim to study the sequence of morphologies, to see where the onset of bipolar shaping occurs, and to use the IR molecular hydrogen lines to map neutral regions around ionized nebulae.


Sign in / Sign up

Export Citation Format

Share Document