scholarly journals Impact of Land Reclamation on Acid Sulfate Soil and Its Mitigation

2020 ◽  
Vol 20 ◽  
pp. 01002
Author(s):  
Arthanur Rifqi Hidayat ◽  
Arifin Fahmi

Land reclamation on acid sulfate soil is a process of improving acid sulfate soil to make them suitable for more productive use, such as increasing crop production. These efforts (land clearing and management, as well as water management system) on acid sulfate soils had increased sulfidic material oxidation, followed by soil acidification, the rise of toxic metal solubility, and basic cation leaching. Mitigation efforts are required to prevent these impacts such as proper water management, utilization of organic matter, adaptive varieties, and optimized technology of fertilization. These mitigations must be carefully done so that they have a minimum negative impact on soil and crop.

2009 ◽  
Vol 4 (1) ◽  
pp. 125
Author(s):  
Akhmad Mustafa ◽  
Rachmansyah Rachmansyah ◽  
Dody Dharmawan Trijuno ◽  
Ruslaini Ruslaini

Rumput laut (Gracilaria verrucosa) telah dibudidayakan di tambak tanah sulfat masam dengan kualitas dan kuantitas produksi yang relatif tinggi. Oleh karena itu, dilakukan penelitian yang bertujuan untuk mengetahui peubah kualitas air yang mempengaruhi laju pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur Provinsi Sulawesi Selatan. Pemeliharaan rumput laut dilakukan di 30 petak tambak  terpilih selama 6 minggu. Bibit rumput laut dengan bobot 100 g basah ditebar dalam hapa berukuran 1,0 m x 1,0 m x 1,2 m. Peubah tidak bebas yang diamati adalah laju pertumbuhan relatif, sedangkan peubah bebas adalah peubah kualitas air yang meliputi: intensitas cahaya, salinitas, suhu, pH, karbondioksida, nitrat, amonium, fosfat, dan besi. Analisis regresi berganda digunakan untuk menentukan peubah bebas yang dapat digunakan untuk memprediksi peubah tidak bebas. Hasil penelitian menunjukkan bahwa laju pertumbuhan relatif rumput laut di tambak tanah sulfat masam berkisar antara 1,52% dan 3,63%/hari dengan rata-rata 2,88% ± 0,56%/hari. Di antara 9 peubah kualitas air yang diamati ternyata hanya 5 peubah kualitas air yaitu: nitrat, salinitas, amonium, besi, dan fosfat yang mempengaruhi pertumbuhan rumput laut secara nyata. Untuk meningkatkan pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur dapat dilakukan dengan pemberian pupuk yang mengandung nitrogen untuk meningkatkan kandungan amonium dan nitrat serta pemberian pupuk yang mengandung fosfor untuk meningkatkan kandungan fosfat sampai pada nilai tertentu, melakukan remediasi untuk menurunkan kandungan besi serta memelihara rumput laut pada salinitas air yang lebih tinggi, tetapi tidak melebihi 30 ppt.Seaweed (Gracilaria verrucosa) has been cultivated in acid sulfate soil-affected ponds with relatively high quality and quantity of seaweed production. A research has been conducted to study water quality variables that influence the growth of seaweed in acid sulfate soil-affected ponds of Angkona Sub-district East Luwu Regency South Sulawesi Province. Cultivation of seaweed was done for six weeks in 30 selected brackishwater ponds. Seeds of seaweed with weight of 100 g were stocked in hapa sized 1.0 m x 1.0 m x 1.2 m. Dependent variable that was observed was specific growth rate, whereas independent variables were water quality variables including light intensity, salinity, temperature, pH, carbondioxide, nitrate, ammonium, phosphate, and iron. Analyses of multiple regressions were used to determine the independent variables which could be used to predict the dependent variable. Research result indicated that relative growth rate of seaweed in acid sulfate soils-affected brackishwater ponds ranged from 1.52% to 3.63%/day with 2.88% ± 0.56%/day in average. Among nine observed water quality variables, only five variables namely: nitrate, salinity, ammonium, phosphate and iron influence significantly on the growth of seaweed in acid sulfate soils-affected brackishwater ponds. The growth of seaweed in acid sulfate soils-affected brackishwater ponds of Angkona District East Luwu Regency, can be improved by using nitrogen-based fertilizers to increase ammonium and nitrate contents and also fertilizers which contain phosphorus to improve phosphate content to a certain level. Pond remediation to decrease iron content and also rearing seaweed at higher salinity (but less than 30 ppt) can also be alternatives to increase the growth of seaweed.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Eva Högfors-Rönnholm ◽  
Margarita Lopez-Fernandez ◽  
Stephan Christel ◽  
Diego Brambilla ◽  
Marcel Huntemann ◽  
...  

Abstract Natural sulfide rich deposits are common in coastal areas worldwide, including along the Baltic Sea coast. When artificial drainage exposes these deposits to atmospheric oxygen, iron sulfide minerals in the soils are rapidly oxidized. This process turns the potential acid sulfate soils into actual acid sulfate soils and mobilizes large quantities of acidity and leachable toxic metals that cause severe environmental problems. It is known that acidophilic microorganisms living in acid sulfate soils catalyze iron sulfide mineral oxidation. However, only a few studies regarding these communities have been published. In this study, we sampled the oxidized actual acid sulfate soil, the transition zone where oxidation is actively taking place, and the deepest un-oxidized potential acid sulfate soil. Nucleic acids were extracted and 16S rRNA gene amplicons, metagenomes, and metatranscriptomes generated to gain a detailed insight into the communities and their activities. The project will be of great use to microbiologists, environmental biologists, geochemists, and geologists as there is hydrological and geochemical monitoring from the site stretching back for many years.


Soil Research ◽  
2000 ◽  
Vol 38 (3) ◽  
pp. 569 ◽  
Author(s):  
B. G. Blunden ◽  
B. Indraratna

The effective management of acid sulfate soils is a major issue for many coastal regions in Australia. Simulations were conducted to evaluate 4 different water management strategies that could be applied to agricultural land on the south coast of New South Wales, Australia, to minimise acid generation from acid sulfate soils. The water management strategies are compared with the existing extensively drained situation which generates and discharges large quantities of acidic pyrite oxidation products. The 4 water management strategies include elevated drain water levels using a weir, 25 mm irrigation on a 7- or 14-day cycle, and elevated drain water levels with irrigation. All of these strategies were designed to minimise the generation of acid by reducing the transport of oxygen to the sulfidic soil. Simulations were conducted for weather and site conditions experienced during a 12-month period starting in July 1997. Model simulations showed that maintenance of elevated drain water levels using a weir in the drain significantly reduced the amount of acid generated by 75% and 57%, at 10 and 90 m distance from the drain, respectively, by comparison with the existing drained state. The addition of 25 mm irrigation on a 14-day cycle to the weir simulation reduced the oxidation of pyrite by a further 1–2%. Application of irrigation only on a 7-day cycle also reduced the acid generated by 89% and 94% at 10 and 90 m distance from the drain, respectively, by comparison with the existing drained state. Irrigation on a 14-day cycle was not as successful in reducing pyrite oxidation as either the 7-day irrigation or weir strategies. Evaluation of the 4 water management options showed that significant improvements can be made with respect to the amount of acid generated by relatively simple and cost-effective land management practices.


2021 ◽  
Vol 232 (11) ◽  
Author(s):  
Niko Kinnunen ◽  
Annamari Laurén ◽  
Jukka Pumpanen ◽  
Tiina M. Nieminen ◽  
Marjo Palviainen

AbstractA 96-h laboratory experiment was conducted to assess the potential of biochar as a water protection tool for acid sulfate soil runoff. Acid sulfate soils pose a risk to water bodies due to acid, metal-rich runoff, especially in drained peatland forests. New water protection methods, such as adsorption with biochar, are needed. We investigated the capability of spruce and birch biochar to adsorb metals and reduce acidity in the water. Water from an acid sulfate site was stirred with biochar, biochar with lime, and biochar with ash. We determined water Al, S, Fe, Cu, Co, Cd, Ni, and Zn concentrations periodically, as well as pH and total organic carbon at the beginning and the end of the experiment. The studied substances are considered the most abundant and environmentally harmful elements in the acid sulfate soils in Finland. Biochar surface characteristics were analyzed with FTIR spectroscopy. Concentration changes were used to parametrize adsorption kinetics models. Biochar adsorbed metals and increased pH, but lime and ash additives did not always improve the adsorption. Spruce biochar and ash addition had generally higher adsorption than birch biochar and lime addition. The adsorption was dominated by Al and Fe at lower pH, while increasing pH improved the adsorption of Cd and Zn. The results show that biochar can increase the water pH, as well as adsorb Al, Fe, Co, Cd, Ni, and Zn. Further work could include an actual-scale biochar reactor in a laboratory and field conditions.


Soil Research ◽  
2002 ◽  
Vol 40 (5) ◽  
pp. 805 ◽  
Author(s):  
Chuxia Lin ◽  
Malcolm W. Clark ◽  
David M. McConchie ◽  
Graham Lancaster ◽  
Nick Ward

The effects of Bauxsol, an abundant industrial by-product, on the immobilisation of soluble acid and a range of potentially environmentally toxic metals in artificial and natural acid sulfate soils were investigated. The acid neutralising capacity of Bauxsol increased with decreasing pH, which is probably provided not only by basic metal hydroxides, carbonates, and hydroxycarbonates but also by protonation of variably charged particles (e.g. gibbsite and hematite) present in Bauxsol. Simulation experiment results show that the removal of 9 tested environmentally significant heavy metals can be enhanced by addition of BauxsolTM; an exception was Co. The removal of the added soluble heavy metals by the BauxsolTM-soil mixtures shows a preferential order of Pb > Fe > Cr > Cu > Zn > Ni > Cd > Co > Mn. For the natural acid sulfate soil without added synthesised metal solution, the retention of the investigated environmentally significant metals is in the following decreasing order : Al > Zn > Fe > Co > Mn.


Author(s):  
H. R. Khan ◽  
M. M. A. Bhuiyan ◽  
S. M. Kabir ◽  
F. Ahmed ◽  
S. M. A. Syeed ◽  
...  

1997 ◽  
Vol 42 (1-2) ◽  
pp. 1-14 ◽  
Author(s):  
L.Q. Minh ◽  
T.P. Tuong ◽  
M.E.F. van Mensvoort ◽  
J. Bouma

2015 ◽  
Vol 7 (12) ◽  
pp. 16756-16770 ◽  
Author(s):  
Theeba Manickam ◽  
Gerard Cornelissen ◽  
Robert Bachmann ◽  
Illani Ibrahim ◽  
Jan Mulder ◽  
...  

2020 ◽  
Vol 20 ◽  
pp. 01006
Author(s):  
Yuli Lestari ◽  
Eni Maftu’ah ◽  
Wahida Annisa

High acidity in acid sulfate soils due to pyrite oxidation results in increased Al3+ and Fe2+ activity which inhibits the growth of rice plants. The application of organic matter (compost) is one of the technology to manage acid sulfate soil. This study aims to obtain cellulolytic bacterial isolates that are superior in composting and improving rice growth in acid sulfate soil. The experiment carries out in the laboratory and glasshouse of the Indonesian Swampland Agriculture Research Institute (ISARI), Banjarbaru, Indonesia on May-November 2017. The experimental to obtain cellulolytic bacteria and water content that can accelerate composting is arranged by factorial using a complete randomized design with three replication First factor were cellulolytic bacteria application (without application/control, BS 1.6, BS 1.9, BS 2.2 and BS 2.5), while the second factor was water content (50%, 100%, and 150%). The effect of compost application with cellulolytic bacterial to rice growth arranged by factorial completely randomized design with 3 replications. The first factor was cellulolytic bacteria application (without application/control, BS 1.6, BS 1.9, and BS 2.2), while the second factor was composting condition (muddy waterlogged and waterlogged 5 cm depth). The result showed that the ability of cellulolytic bacteria to reduce C/N straw was not different. Only differences in water content affect the reducing C/N ratio of straw. The average C/N ratio of straw compost made with 50%, 100%, and 150% water content is 35.59; 29.71, and 29.21. Application of compost made under muddy waterlogged and inoculated BS1.9 and BS2.2 can increase the number of tillers, while those inoculated BS1.6 and BS1.9 can increase the rice shoot dry weight of Inpara 2. The suggest that cellulolytic bacterial inoculation can improve the quality of compost so that the growth of rice is better.


Sign in / Sign up

Export Citation Format

Share Document