scholarly journals Kinetic studies of adsorption of Cu (II) from aqueous solution by coriander seeds (Coriandrum Sativum)

2018 ◽  
Vol 37 ◽  
pp. 02005
Author(s):  
L. Kadiri ◽  
A. Lebkiri ◽  
E.H. Rifi ◽  
A. Ouass ◽  
Y. Essaadaoui ◽  
...  

The adsorption of copper ions Cu2+ by Coriandrum Sativum seeds (CSS) from aqueous solution was studied in order to highlight the importance of coriander seeds as a potential tool in the treatment of wastewaters containing heavy metals. The kinetic studies of adsorption of Cu (II) were discussed using the spectroscopic technique “Inducting Coupled Plasma” (ICP). The effects of initial copper ion concentration and contact time were determined. All results show that coriander seeds have, over their culinary and medicinal benefits, a significant adsorbent power of copper ions.

2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Erzsébet-Sára Bogya ◽  
Réka Barabás ◽  
Alexandra Csavdári ◽  
Valentina Dejeu ◽  
Ioan Bâldea

AbstractThis paper aims to increase the sorption capacity of hydroxyapatite and to find the best apatite-based material for metal ions sorption. The sorption process of copper ions from water solutions by HAP and structurally modified HAP was carried out in this work. Structural modifications of HAP were realized in the preparation phase by an addition of sodium silica into the reaction medium. The prepared materials were characterized by physical-chemical methods: IR, electron-microscopy and X-ray diffraction. The composites characterized were tested in kinetic studies regarding ion exchange and adsorption of Cu2+. It was revealed that the silica content, particle size and initial copper ion concentration influence the process rate.


KOVALEN ◽  
2016 ◽  
Vol 2 (3) ◽  
Author(s):  
Khairuddin Khairuddin ◽  
Dwi Juli Puspitasari

This researh aims to application of cellulose-diethylenetriamine as a binding layer on the diffusive gradients in thin films method with modification of cellulose with diethylenetriamine. The method of diffusive gradients in thin films in principle uses  a simple instrument such as round plastic with a diameter of 2.5 cm, which is filled with metal binding gel, diffusive gel, and membrane filter of       0.45 µm. The metal ions were diffuse through the membrane filter and diffusive gel according to the Fick's Law I, and then is accumulated in the binding layer gel. Based on the results of FTIR analysis, the formation of the binders of the copper ions at the binding layer of cellulose-dietilentriamina involves amine and hydroxyl functional groups.The results of the application of cellulose- diethylenetriamine using as binding layer with polyacrylamide diffusive gel showed a liniar concentration up to 12 hours of contact time and initial copper ion concentration up to 1000 mg/L. The maximum concentration of copper was obtained at pH 4.Keywords: copper,  cellulose- diethylenetriamine, polyacrylamide gel.


2008 ◽  
Vol 5 (4) ◽  
pp. 761-769 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
K. Rasappan ◽  
P. S. Syed Shabudeen ◽  
R. Venkatesh ◽  
...  

Activated carbon prepared from Ricinus communis Pericarp was used to remove Ni(II) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out by varying contact time, metal-ion concentration, carbon concentration and pH to assess kinetic and equilibrium parameters. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Qo) calculated from the Langmuir isotherm was 31.15 mg/g of activated carbon at initial pH of 5.0±0.2 for the particle size 125-250 µm.


2021 ◽  
Vol 12 (2) ◽  
pp. 2022-2040

Almond shell (AS) is a low-cost adsorbent used in this study for the removal of methylene blue (MB), crystal violet (CV), and Congo red (CR) from an aqueous solution in single and mixture binary systems. The low-cost adsorbent was characterized by FTIR and SEM analysis. The effects of AS dose, contact time, initial dye concentration, pH, and temperature on MB, CV, and CR adsorption were studied in a single system. In a binary system, the MB, CV, and CR were removed from the mixture of MB+CR, CV+MB, and CV+CR with a percentage in volume ranging from 0 to 100 % in MB and CV, and CR. Kinetic studies showed rapid sorption following a second-order kinetic model with of contact time of 10 min. The modulation of adsorption isotherms showed that retention follows the Langmuir model. The thermodynamic parameters proved that the MB, CV, and CR adsorption process was feasible, spontaneous, and exothermic. The synergy adsorption between dyes in a binary mixture of MB+CR and CV+CR, while the competition adsorption between dyes in a binary mixture of MB+ CV.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Venkateswara Rao Surisetty ◽  
Janusz Kozinski ◽  
L. Rao Nageswara

Ficus benghalensisL., a plant-based material leaf powder, is used as an adsorbent for the removal of lead ions from aqueous solution using the biosorption technique. The effects of process parameters such as contact time, adsorbent size and dosage, initial lead ion concentration, and pH of the aqueous solution on bio-sorption of lead byFicus benghalensisL. were studied using batch process. The Langmuir isotherm was more suitable for biosorption followed by Freundlich and Temkin isotherms with a maximum adsorption capacity of 28.63 mg/g of lead ion on the biomass ofFicus benghalensisL. leaves.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1864 ◽  
Author(s):  
Ziling Cao ◽  
Chen Zhang ◽  
Zhuoxin Yang ◽  
Qing Qin ◽  
Zhihua Zhang ◽  
...  

Carbon aerogel (CA) has a rich porous structure, in which micropores and mesopores provide a huge specific surface area to form electric double layers. This property can be applied to the application of capacitive deionization (CDI). The adsorption effect of CA electrode on Cu2+ in an aqueous solution was explored for solving heavy metal water pollution. The CAs were synthesized by a sol-gel process using an atmospheric drying method. The structure of CAs was characterized by scanning in an electron microscope (SEM) and nitrogen adsorption/desorption techniques. The adsorption system was built using Cu2+ solution as the simulation of heavy metal pollution solution. The control variate method was used to investigate the effect of the anion species in copper solution, the molar ratio of resorcinol to catalyst (R/C) of CA, and the applied voltage and concentration of copper ion on the adsorption results.


2018 ◽  
Vol 150 ◽  
pp. 251-259 ◽  
Author(s):  
Xin Liu ◽  
Zhao-Qiong Chen ◽  
Bin Han ◽  
Chun-Li Su ◽  
Qin Han ◽  
...  

2020 ◽  
Vol 3 (6) ◽  
pp. 857-870
Author(s):  
Shagufta Zafar ◽  
Muhammad Imran Khan ◽  
Mushtaq Hussain Lashari ◽  
Majeda Khraisheh ◽  
Fares Almomani ◽  
...  

AbstractThe present study investigates the removal of copper ions (Cu (II)) from aqueous solution using chemically treated rice husk (TRH). The chemical treatment was carried out using NaOH solution and the effect of contact time (tc), adsorbent dosage (Dad), initial Cu (II) concentration ([Cu]i), and temperature (T) on the percentage removals of Cu (II) (%RCu) were investigated. Different analytical techniques (FTIR, SEM, and EDX) were used to confirm the adsorption (ads) of Cu (II) onto the TRH. The ads kinetics was tested against pseudo-first-order (PFO) and pseudo-second-order (PSO) models as well as Langmuir and Freundlich isotherms. Treating RH with NaOH altered the surface and functional groups, and on the surface of RH, the ionic ligands with high electro-attraction to Cu increased and thus improved the removal efficiency. The %RCu decreased by increasing the [Cu]i and increased by increasing the ct, Dad, and T. Up to 97% Cu removal was achieved in ct of 30 min using Dad of 0.3 g [Cu]i of 25 mg L−1 and T = 280 K. The ads of Cu on TRH is endothermic, spontaneous, follows Langmuir isotherms, and exhibited a PSO kinetics. Moreover, the TRH was successfully regenerated and used for further adsorption cycles using 1 M HNO3.


2015 ◽  
Vol 804 ◽  
pp. 239-242
Author(s):  
Duongruitai Nicomrat ◽  
Jirasak Tharajak

Copper ions are commonly contaminated in the effluents from many electronic factory. In copper filtration, most filter types are usually expensive and causes toxic residues and creates another health and environmental problem. Therefore, this research has been developed a copper filtration approach based on homemade non-hazardous residues of banana peels, unmeshed sand, and charcoal. The results showed that baked, minced banana peels media could absorb synthetic water having copper ion at 50 ppm with filtration efficiency of 70% within 2 hr. Baked minced banana peels in combination with sand and charcoal could adsorb Copper (II) at 50 mg/ mL more than 80%. However, the swollen structure of banana peels during copper (II) filtration caused limit filtration efficiency to 4-5 hour extraction period. The tentative wastewater treatment application is, therefore, the use of bio-adsorbent for effective adsorption of toxic heavy metals from effluents open discarded from agricultural wastes in the environment.


2016 ◽  
Vol 835 ◽  
pp. 378-385 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Mohamed Kutty ◽  
Mohamed Hasnain Isa ◽  
Usman Aminu Umar ◽  
Emmanuel Olisa

Industrial wastewater containing toxic pollutants such as heavy metals tends to contaminate the environment once it is release without proper treatment. Heavy metals are toxic to both human and other living organisms. It is necessary to treat industrial wastewater polluted with heavy metals prior to its discharge into the receiving environment. In this study, low cost adsorbent was generated from sugarcane bagasse through incineration. The prepared adsorbent “microwave incinerated sugarcane bagasse ash” (MISCBA) was used in removing copper and zinc from aqueous solution. Parameters of importance such as pH, contact time and adsorbent dosages are studied to investigate their effects on the adsorption of copper and zinc. Maximum adsorption was observed at pH 6.0, contact time of 180 minutes and adsorbent dosage of 10 g/L. Zinc removal follows Langmuir isotherm model with correlation coefficient of 0.9291. Copper adsorption follows both Langmuir and Freundlich isotherm model with correlation coefficient of 0.9181 and 0.9742, respectively. Removal capacities of 38.4 mg/g and 20.4 mg/g were obtained for copper and zinc, respectively. Application of MISCBA as low - cost adsorbent have shown significant outcome in removal of copper and zinc from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document