scholarly journals Organic Dyes Adsorption on the Almond Shell (Prunus dulcis) as Agricultural Solid Waste from Aqueous Solution in Single and Binary Mixture Systems

2021 ◽  
Vol 12 (2) ◽  
pp. 2022-2040

Almond shell (AS) is a low-cost adsorbent used in this study for the removal of methylene blue (MB), crystal violet (CV), and Congo red (CR) from an aqueous solution in single and mixture binary systems. The low-cost adsorbent was characterized by FTIR and SEM analysis. The effects of AS dose, contact time, initial dye concentration, pH, and temperature on MB, CV, and CR adsorption were studied in a single system. In a binary system, the MB, CV, and CR were removed from the mixture of MB+CR, CV+MB, and CV+CR with a percentage in volume ranging from 0 to 100 % in MB and CV, and CR. Kinetic studies showed rapid sorption following a second-order kinetic model with of contact time of 10 min. The modulation of adsorption isotherms showed that retention follows the Langmuir model. The thermodynamic parameters proved that the MB, CV, and CR adsorption process was feasible, spontaneous, and exothermic. The synergy adsorption between dyes in a binary mixture of MB+CR and CV+CR, while the competition adsorption between dyes in a binary mixture of MB+ CV.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2018 ◽  
Vol 9 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Jahangir Alam ◽  
Syeda Rahimon Naher

The adsorption capacity of chromium(III) from synthetic waste water solution by a low cost biomaterial, Jute Stick Powder (JSP)was examined. A series of batch experiments were conducted at different pH values, adsorbent dosage and initial chromium concentration to investigate the effects of these experimental conditions. To analyze the metal adsorption on to the JSP, most common adsorption isotherm models were applied. To study the reaction rate, the kinetic and diffusion models were also applied. The morphological structure and variation of functional groups in the JSP before and after adsorption was examined by scanning electron microscope (SEM) and Fourier transform infrared spectrometry (FT-IR). Maximum chromium removal capacities of JSP was 84.34%with corresponding equilibrium uptake 8.4 mg/g from 50 mg/L of synthetic metal solution in 60 minutes of contact time at pH = 6.0 and 28 °C with continuous stirring at 180 rpm. The percent sorption of the biomass decreased with increasing concentration of metal ion but increased with decreasing pH, increasing contact time and adsorbent doses. Data for this study indicated a good correspondence with both isotherms of Langmuir and Freundlich isotherm. The analysis of kinetic indicated that Chromium was consistent with the second-order kinetic adsorption model. The rate of removal of Cr(III) ions from aqueous solution by JSP was found rapid initially within 5-30 minutes and reached in equilibrium in about 40 minutes. The investigation revealed that JSP, a low cost agricultural byproduct, was a potential adsorbent for removal of heavy metal ions from aqueous solution.


2017 ◽  
Vol 105 (12) ◽  
Author(s):  
Sayed S. Metwally ◽  
Hoda E. Rizk ◽  
Mona S. Gasser

AbstractGreen composites emphasize renewable starting materials for better economy using biomass materials. Therefore, low-cost composite biosorbent was prepared by modification of eggshell material using heteropoly acid for removal of strontium ions from aqueous solution. The resulted composite was characterized and evaluated for the sorption process using the batch technique. Low concentration of strontium ions was used to evaluate the sorption sensitivity of the prepared composite. The obtained experimental results illustrated that the modification process of eggshell material enhanced the percent uptake from 49.9 to 95.7%. From kinetic studies, the sorption of strontium ions follows the pseudo-second-order kinetic model. The isotherm studies indicated that Langmuir is more applicable than Freundlich isotherm. Moreover, Dubinin–Radushkevich isotherm was studied. Thermodynamic studies revealed that the sorption process is spontaneous and has endothermic nature. Strontium ions can be desorbed from the modified eggshell using HNO


Author(s):  
Buhari Magaji ◽  
Aisha U. Maigari ◽  
Usman A. Abubakar ◽  
Mukhtar M. Sani ◽  
Amina U. Maigari

This study was aimed at using Balanite aegyptiaca seed coats activated carbon (BAAC) as a potential adsorbent to remove safranin dye from aqueous solution. BAAC was prepared from Balanite aegyptiaca seed coats using a one-step procedure with 67.27% yield, 3.23% ash content, 695 m2/g surface area and 203 mg/g iodine number. The FTIR spectroscopy revealed O-H, N-H, C-H, C=C, C-O-H stretching vibrations. The influences of agitation time, initial dye concentration and adsorbent dose were studied in batch experiments at room temperature. The adsorptions were rapid at the first 15 minutes of agitation, with the uptake of 2.746 mg/kg. The adsorption equilibrium was achieved at 90 minutes of agitation. Kinetic studies showed good correlation coefficient for both pseudo-first order and pseudo-second-order kinetics model but fitted well into pseudo-second order kinetic model. The adsorption data fitted well into Langmuir isotherm with correlation coefficient (R2) very close to unity and Langmuir maximum adsorption constant, qm  1.00. Thus, the fitting into Langmuir indicates monolayer coverage on the adsorbents. The results showed that BAAC has the potential to be applied as alternative low-cost adsorbents in the remediation of dye contamination in wastewater.


Author(s):  
Arif Nazir ◽  
Farwa Zahra ◽  
Muhammad Usman Sabri ◽  
Abdul Ghaffar ◽  
Abdul Qayyum Ather ◽  
...  

Abstract Biosorption is one of the effective technique for removal of metals from aqueous solutions/industrial effluents. Present work is aimed to use low cost and ecofriendly material to remove the iron metal from aqueous solution which could possibly be used at industrial level. For this purpose, Bougainvillea spectabilis leaves were used for the production of charcoal. This charcoal was activated using HCl and HNO3. The AC shows promising efficiency for the adsorption of Fe II as a function of medium pH, contact time, adsorbent dose and temperature. Maximum adsorption was observed with 0.5–0.9 g adsorbent dose, 30 min contact time and at pH 3. Adsorption showed independence of temperature in the range of 30–70 °C. Among, Freundlich and Langmuir isotherms, the adsorbate followed Langmuir isothermal model. Among kinetics models, adsorbate followed pseudo second order kinetic model with R2 values of 0.9985 and 0.9996 for HCl treated and HNO3 treated AC, respectively. These data suggest that AC synthesized from Bougainvillea leaves proved to be an excellent adsorbent for the removal of iron metal from aqueous solution.


2021 ◽  
Vol 11 (5) ◽  
pp. 12831-12842

High amounts of phosphate (PO43–) discharged in receiving water can lead to eutrophication, which endangers life below water and human health. This study elucidates the removal of PO43– from synthetic solution by iron-coated waste mussel shell (ICWMS). The PO43– adsorption by ICWMS was determined at different process parameters, such as initial PO43– concentration (7 mg L−1), solution volume (0.2 L), adsorbent dosage (4, 8, 12, 16, and 20 g), and contact time. The highest efficiency of PO43− removal can reach 96.9% with an adsorption capacity of 0.30 mg g−1 could be obtained after a contact time of 48 h for the use of 20 g of ICWMS. Batch experimental data can be well described by the pseudo-second-order kinetic model (R2 = 0.999) and Freundlich isotherm model (R2 = 0.996), suggesting that chemisorption and multilayer adsorption occurred. The efficiency of PO43– removal from aqueous solution by ICWMS was verified to contribute to applying a new low-cost adsorbent obtained from waste mussel shell in the field of wastewater treatment.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Öznur Dülger ◽  
Fatma Turak ◽  
Kadir Turhan ◽  
Mahmure Özgür

Sumac Leaves (SL) (Rhus Coriaria L. ) were investigated as an inexpensive and effective adsorbent for the adsorption of methylene blue (MB) from aqueous solution. The effects of initial dye concentration, initial solution pH, phases contact time, and adsorbent dose on the adsorption of MB on SL were investigated. The amount of dye adsorbed was found to vary with initial solution pH, Sumac Leaves dose, MB concentration, and phases contact time. The Langmuir and Freundlich adsorption models were evaluated using the experimental data and the experimental results showed that the Langmuir model fits better than the Freundlich model. The maximum adsorption capacity was found to be 151.69 mg/g from the Langmuir isotherm model at 25°C. The value of the monolayer saturation capacity of SL was comparable to the adsorption capacities of some other adsorbent materials for MB. The adsorption rate data were analyzed according to the pseudo-first order kinetic and pseudo-second order kinetic models and intraparticle diffusion model. It was found that kinetic followed a pseudo-second order model.


Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2682
Author(s):  
Gyuhyeon Kim ◽  
Young-Mo Kim ◽  
Su-Min Kim ◽  
Hyun-Uk Cho ◽  
Jong-Moon Park

In this study, magnetic steel slag biochar (MSSB) was synthesized from low-cost steel slag waste to investigate the effectiveness of steel slag biochar composite for NH4-N removal and magnetic properties in aqueous solution. The maximum adsorption capacity of NH4-N by MSSB was 4.366 mg/g according to the Langmuir model. The magnetic properties of MSSB indicated paramagnetic behavior and a saturation magnetic moment of 2.30 emu/g at 2 Tesla. The NH4-N adsorption process was well characterized by the pseudo-second order kinetic model and Temkin isotherm model. This study demonstrated the potential of magnetic biochar synthesized from steel slag waste for NH4-N removal in aqueous solution.


2019 ◽  
Vol 7 (2) ◽  
pp. 240-246
Author(s):  
Kaur Harpreet ◽  
Kaur Harpreet ◽  
Vandana Kamboj ◽  
Vandana Kamboj

Water is the most crucial thing to mankind and so its contamination by various agencies is posing a threat to the natural balance. So, in the present work, the efficiency of various adsorbents derived from plant waste, to remove different dyes from aqueous solution was evaluated. Parameters for study were contact time, concentration and pH. Various combinations of plant ashes were used for the study. It was found that adsorbent prepared from the combination of orange peels, pomegranate and banana peels ashes, exhibited good adsorption capacity for methylene blue, congo red and crystal violet. All these dyes were completely removed from the aqueous solution while methyl orange was not removed. Congo red was removed completely within 40 min of contact with the adsorbent while methyl orange took 3 hrs to be removed to the extent of 48% only. The adsorption coefficient of congo red was found to be 2.33 while value for methylene blue and crystal violet was 1 and 1.66 respectively. The characterization of adsorbent was done by Scanning Electron Microscopy and IR spectroscopy. SEM image revealed the surface of adsorbent to be made of differential pores. From the results it became evident that the low-cost adsorbent could be used as a replacement for costly traditional methods of removing colorants from water.


Sign in / Sign up

Export Citation Format

Share Document