scholarly journals Numerical simulation of bedload tracer transport associated with sand bar formation, bank erosion, and channel migration

2018 ◽  
Vol 40 ◽  
pp. 02013
Author(s):  
Toshiki Iwasaki ◽  
Satomi Yamaguchi ◽  
Hiroki Yabe

An understanding of bedload transport processes is an essential research goal for better prediction of river morphology and morphodynamics as well as the transport and fate of sediment-bound materials in river systems. Passive tracer particles have been used widely to monitor bedload transport processes in rivers by measuring the spatiotemporal distribution of the bedload tracers. Here, we propose a numerical model for reproducing the transport of bedload tracers in river systems, more specifically, the behaviours of bedload tracers under the influence of complex river morphodynamics. A two-dimensional morphodynamic model is combined with a flux-based bedload tracer model with use of the active layer approach. The model is applied to a laboratory experiment that demonstrates the transport processes within the channel of bedload tracers supplied from the floodplain. The numerical model effectively reproduces the main features of the experiment, namely, the bedload tracers supplied from the floodplain due to bank erosion deposit onto sand bars developed within the channel. Because the sand bars cause a very long residence time of the bedload tracers within the bed, the transport speed of the tracers is slowed significantly under the influence of bar formation and channel migration.

2016 ◽  
Vol 93 ◽  
pp. 75-88 ◽  
Author(s):  
Kamal El Kadi Abderrezzak ◽  
Andrés Die Moran ◽  
Pablo Tassi ◽  
Riadh Ata ◽  
Jean-Michel Hervouet

Water ◽  
2015 ◽  
Vol 7 (10) ◽  
pp. 5239-5257 ◽  
Author(s):  
Shervin Faghihirad ◽  
Binliang Lin ◽  
Roger Falconer

2020 ◽  
Author(s):  
Chenliang Wu ◽  
et al.

Additional details on the numerical model, code availability, and data from natural examples.<br>


2021 ◽  
Author(s):  
Peter-Lasse Giertzuch ◽  
Alexis Shakas ◽  
Bernard Brixel ◽  
Joseph Doetsch ◽  
Mohammadreza Jalali ◽  
...  

&lt;p&gt;Monitoring and characterization of flow and transport processes in the subsurface has been a key focus of hydrogeological research for several decades. Such processes can be relevant for numerous applications, such as hydrocarbon and geothermal reservoir characterization and monitoring, risk assessment of soil contaminants, or nuclear waste disposal strategies.&lt;/p&gt;&lt;p&gt;Monitoring of flow and transport processes in the subsurface is often challenging, as they are usually not directly observable. Here, we present an approach to monitor saline tracer migration through a weakly fractured crystalline rock mass by means of Ground Penetrating Radar (GPR), and we evaluate the data quantitatively in terms of a flow velocity field and localized difference GPR breakthrough curves (DRBTC).&lt;/p&gt;&lt;p&gt;Two comparable and repeated tracer injection experiments were performed within saturated rock on the decameter scale. Time-lapse single-hole reflection data were acquired from two different boreholes during these experiments using unshielded and omnidirectional borehole antennas. The individual surveys were analyzed by difference imaging techniques, which allowed ultimately for tracer breakthrough monitoring at different locations in the subsurface. By combining the two complimentary GPR data sets, the 3D tracer velocity field could be reconstructed.&lt;/p&gt;&lt;p&gt;Our DRBTCs agree well with measured BTCs of the saline tracer at different electrical conductivity monitoring positions. Additionally, we were able to calculate a DRBTC for a location not previously monitored with borehole sensors. The reconstructed velocity field is in good agreement with previous studies on dye tracer data at the same research locations. Furthermore, we were able to resolve separate flow paths towards different monitoring locations, which could not be inferred from the electrical conductivity sensor data alone. The GPR data thus helped to disentangle the complex flow field through the fractured rock.&lt;/p&gt;&lt;p&gt;Out technique can be adapted to other use cases such as 3D monitoring of fluid migration (and thus permeability enhancement) during hydraulic stimulation and tracing fluid contaminants &amp;#8211; e.g. for nuclear waste repository monitoring.&lt;/p&gt;


2015 ◽  
Vol 773 ◽  
pp. 498-519 ◽  
Author(s):  
A. J. T. M. Mathijssen ◽  
D. O. Pushkin ◽  
J. M. Yeomans

We study tracer particle transport due to flows created by a self-propelled micro-swimmer, such as a swimming bacterium, alga or a microscopic artificial swimmer. Recent theoretical work has shown that as a swimmer moves in the fluid bulk along an infinite straight path, tracer particles far from its path perform closed loops, whereas those close to the swimmer are entrained by its motion. However, in biologically and technologically important cases tracer transport is significantly altered for swimmers that move in a run-and-tumble fashion with a finite persistence length, and/or in the presence of a free surface or a solid boundary. Here we present a systematic analytical and numerical study exploring the resultant regimes and their crossovers. Our focus is on describing qualitative features of the tracer particle transport and developing quantitative tools for its analysis. Our work is a step towards understanding the ecological effects of flows created by swimming organisms, such as enhanced fluid mixing and biofilm formation.


2018 ◽  
Vol 22 (1) ◽  
pp. 767-787 ◽  
Author(s):  
Teodor Petrut ◽  
Thomas Geay ◽  
Cédric Gervaise ◽  
Philippe Belleudy ◽  
Sebastien Zanker

Abstract. Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.


2019 ◽  
Vol 7 (7) ◽  
pp. 210
Author(s):  
Anita Engelstad ◽  
Gerben Ruessink ◽  
Piet Hoekstra ◽  
Maarten van der Vegt

Inundation of barrier islands can cause severe morphological changes, from the break-up of islands to sediment accretion. The response will depend on island geometry and hydrodynamic forcing. To explore this dependence, the non-hydrostatic wave model SWASH was used to investigate the relative importance of bedload transport processes, such as transport by mean flow, short- (0.05–1 Hz) and infragravity (0.005–0.05 Hz) waves during barrier island inundation for different island configurations and hydrodynamic conditions. The boundary conditions for the model are based on field observations on a Dutch barrier island. Model results indicate that waves dominate the sediment transport processes from outer surfzone until landwards of the island crest, either by transporting sediment directly or by providing sediment stirring for the mean flow transport. Transport by short waves was continuously landwards directed, while infragravity wave and mean flow transport was seaward or landward directed. Landward of the crest, sediment transport was mostly dominated by the mean flow. It was forced by the water level gradient, which determined the mean flow transport direction and magnitude in the inner surfzone and on the island top. Simulations suggest that short wave and mean flow transport are generally larger on steeper slopes, since wave energy dissipation is less and mean flow velocities are higher. The slope of the island top and the width of the island foremost affect the mean flow transport, while variations in inundation depth will additionally affect transport by short-wave acceleration skewness.


2013 ◽  
Vol 98 (1) ◽  
pp. 173-192 ◽  
Author(s):  
Fuguo Tong ◽  
Auli Niemi ◽  
Zhibing Yang ◽  
Fritjof Fagerlund ◽  
Tobias Licha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document