scholarly journals Sound insulation of wooden floors

2018 ◽  
Vol 49 ◽  
pp. 00077
Author(s):  
Artur Nowoświat ◽  
Rafał Żuchowski ◽  
Michał Marchacz ◽  
Leszek Dulak

The objective of the article is to assess acoustic insulation of a wooden floor structure between stories in a pre-war residential building. The measurements involved acoustic insulation against impact sounds and airborne sounds. The article presents the results of acoustic tests for noninsulated floors and then for floors insulated with mineral wool. First, the results of the research were analyzed in terms of single-number acoustic insulation rates. These results were compared to the standards and findings described by other researchers. Then, an analysis was carried out for the processes as a function of frequency. The conclusions described in this article allow us to assess the applied acoustic insulation system.

2014 ◽  
Vol 899 ◽  
pp. 491-494 ◽  
Author(s):  
Lenka Autratová ◽  
Petr Hlavsa

Impact sound transmission loss is the ability of structure to absorb impact noise, which is formed by mechanical impulses (steps, falls). The impact noise is then spread to the elements connected to the floor structure, such as the ceiling and surrounding wall. Dynamic stiffness is one of the important parameters that affect the sound insulation of ceiling structures with floating floors. The article deals with the optimal design of acoustic insulation to the floor composition, combining different materials of various thicknesses with various characteristic properties.


2021 ◽  
Vol 263 (3) ◽  
pp. 3064-3072
Author(s):  
Takashi Yamauchi ◽  
Atsuo Hiramitsu ◽  
Susumu Hirakawa

The air layer between the interior finishes and the structure is used as piping and wiring space. In many cases, ceilings and dry-type double floors are commonly constructed in Japan. However, the effect of the air layer of ceilings and dry-type double floors on the heavy-weight floor impact sound insulation performance has not yet quantitatively investigated. Therefore, in this study, the same floor and ceiling structures were constructed for concrete and CLT buildings, and the heavy-weight floor impact sound was investigated. As results, it was confirmed that the reduction amount of the heavy-weight floor impact sound by the ceiling tended to be smaller in CLT buildings than in concrete buildings. However, the trends were similar. Due to the dry-type double floor structure, the heavy-weight floor impact sound level was increased in concrete building and decreased in CLT building at 63 Hz in the octave band center frequency band. Therefore, it can be said that the dry-type double floor structure can be used to improve the heavy-weight floor impact sound performance in the CLT building.


Author(s):  
Francisco José García-Cobos ◽  
Rubén Maderuelo-Sanz

In the residential building sector, the use of floating floors is a common practice which increasingly used to reduce vibrations and impact noise. These are usually made from industrial materials, although the emerging concern for sustainable construction is leading to the use of other materials from recycled waste. This article studies the performance of rubber, cork, and cigarette butts as a floating floor. For this purpose, their acoustic properties (ISO 9052-1 and 12,354-2 standards) are analyzed and compared with those of some commercial materials. The results obtained indicated that the performance of these eco-materials is equal or superior to that of commercially available materials.


2020 ◽  
Vol 12 (20) ◽  
pp. 8328 ◽  
Author(s):  
Tomas Kinderis ◽  
Mindaugas Daukšys ◽  
Jūratė Mockienė

Over the past decade, several types of composite slim floor constructions have been used in multi-storey buildings in Lithuania. In order to study the efficiency of composite beam application in steel-framed multi-storey buildings, Thorbeam (A1), Deltabeam (A2), slim floor beam (A3) and asymmetric slim floor beam (A4) were chosen and evaluated according to nine assessment criteria (beam cost (K1), initial preparation on site (K2), installation time (K3), complexity of installation technology (K4), labour costs (K5), fire resistance (K6), load bearing capacity (K7), beam versatility (K8), and availability of beams (K9)). First, the significance of the rating criteria was selected and the order of the ranking criteria was obtained (K1˃K7˃K3˃K6˃K4˃K5˃K2˃K8˃K9) by means of a survey questionnaire. Second, the beams were ranked according to the points given by the questionnaire respondents as follows: 160 points were given to A2, 144 points to A1, 129 points to A4, and 111 points to A3. Deltabeam is considered to be the most rational alternative of the four beams compared. Calculations done using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) analysis method revealed that composite beam A2 was the best slim floor structure alternative for an eight-storey high-rise commercial residential building frame, A1 ranked second, A4 ranked third, and A3 ranked fourth. In addition, the four composite beams were compared to a reinforced concrete beam (A5) according to three assessment criteria (beam cost including installation (C1), beam self-weight (C2) and fire resistance (C3)). Deltabeam was found to be efficient for use as a slim floor structure in a multi-story building due to having the lowest cost, including installation, and self-weight, and the highest fire resistance compared to other composite beams studied. Although Deltabeams are 1.4 times more expensive than reinforced concrete beams, including installation costs, they save about 2.5% of the building’s height compared to reinforced concrete beams.


2020 ◽  
pp. 1351010X2096615
Author(s):  
Anders Homb ◽  
Simone Conta ◽  
Christoph Geyer ◽  
Niko Kumer

The industrialisation of timber buildings has improved strongly in recent years. When long span is required, timber hollow-box floor elements are increasingly used due to their structural performance. The aim of this paper is to assess the acoustic performance of timber hollow-box floors, determine the governing parameters and identify the corresponding trends. We collected results from laboratory measurements covering both airborne and impact sound insulation from four different laboratories covering a wide range of application. Data include the bare floor constructions and their combination with different floating floors including both lightweight solutions and hybrid solution. We performed the analysis focusing on following parameters: element stiffness, element mass per unit area, dynamic stiffness of the resilient layer, cavity filling and floating floor material. We present the collected data both frequency-dependent and as single number quantities. General trends and features are identified in the frequency-dependent diagrams. A further detailed analysis is based on the single number quantities. It includes a general relationship between element mass per unit area and given requirements for R’W + C50-5000 and L’n,w + CI,50-2500. Furthermore, diagrams are presented illustrating the dependence of impact sound insulation numbers on the cavity filling, the dynamic stiffness of the resilient layer and the type of material used for the floating floor. The additional mass in the cavity improves both airborne and impact sound insulation by minimum 10 dB. This, combined with a floating floor, allows the fulfilment of a wide range of requirements.


2015 ◽  
Vol 752-753 ◽  
pp. 698-701
Author(s):  
Kyoung Woo Kim ◽  
Jun Oh Yeon ◽  
Kwan Seop Yang

Floating floor structures installed with resilient materials are commonly used to reduce sound from floor impacts. Resilient materials minimize the transmission of vibrations by absorbing shock vibrations occurring on the upper part. The floor impact sound reduction performance of resilient materials is related to the dynamic stiffness, which is a physical characteristic of materials. However, the dynamic stiffness varies according to the increase in the loading time of the load that is installed on the upper part of resilient materials. The dynamic stiffness values increase with an increase in the loading time; an increased dynamic stiffness value decreases the vibration reduction effect. The present study focuses on a floor structure installed with resilient materials, and identifies the degree of reduction in floor impact sound insulation performance with the elapse of time. The insulation of sound from lightweight impact sound decreased with the elapse of time, whereas the heavyweight impact sound did not show significant changes.


2020 ◽  
pp. 152808372094074
Author(s):  
Shafiqul Islam ◽  
Magdy El Messiry ◽  
Partha Pratim Sikdar ◽  
Joshua Seylar ◽  
Gajanan Bhat

One of the key issues of the 21st century is to reduce the rate of continuously increasing environmental pollution from waste generated by human beings. Use of recycled materials and environmentally friendly approaches to manufacturing can be a good way to deal with these challenges. Similarly, sound pollution has been increasing at an alarming rate due to industrialization and modernization. Use of acoustic insulation materials produced from recycled textile waste can play a vital role in reduction of sound pollution while simultaneously helping reduce municipal solid waste. The goal of this study was to evaluate the recycling of used apparels to produce commercially feasible sustainable products using nonwoven fabrication techniques with a biodegradable thermoplastic binder fiber for possible use as acoustic insulation panels. Recycled denim fibers were used with Sorona® or a PLA binder fiber to successfully produce sound insulation with good performance properties. Maximum transmission loss of about 24 dB and transmission coefficient close to zero at around 1000 Hz were observed. The data indicated that there is a direct correlation between loss of sound transmission with increase in thickness, areal density and decrease in air permeability. When compared with commercially available acoustic insulation material (gypsum board), these products had better insulation properties, indicating that recycled textile products can be used to produce such value-added materials, giving them another useful life before safely disposing in composting environments.


Sign in / Sign up

Export Citation Format

Share Document