scholarly journals Slope stability monitoring in open pit mines using 3D terrestrial laser scanning

2018 ◽  
Vol 66 ◽  
pp. 01020
Author(s):  
Miroslawa Bazarnik

In open pit mines the aspect of preventing and forecasting the threat of landslides and rock falls is crucial issue because of the significant consequences that instabilities may have. Systematic slope stability monitoring is necessary to ensure safe and continuous mining operations. The development of innovative technologies, such as 3D laser scanning, opens up new possibilities, especially in the case of large and hard-to-reach areas, such as open pit mines. Terrestrial laser scanners (TLS) provide fast, efficient, detailed, and accurate three-dimensional data. The article discusses the use of 3D terrestrial laser scanning method to monitor slope displacements and landslides in open pit mines. The first part of the article discusses the risk scale of gravitational displacement on the slopes, on examples of Polish open pit mines, and introduces the most common slope monitoring methods. Then, the principles of 3D terrestrial laser scanning were defined, and some examples of TLS applications in the open pit mines were presented.

2019 ◽  
Vol 11 (6) ◽  
pp. 606 ◽  
Author(s):  
Zhihua Xu ◽  
Ershuai Xu ◽  
Lixin Wu ◽  
Shanjun Liu ◽  
Yachun Mao

Terrestrial laser scanning (TLS) techniques have been widely used in open-pit mine applications. It is a crucial task to measure the exploitative volume of open-pit mines, within a specific time interval. One major challenge is posed, however, when conducting accurate registrations for temporal TLS surveys in continuously changing areas, created by excavation activities. In this paper, we propose a coarse-to-fine registration method, based on terrain-invariant regions (TIR), for temporal TLS surveys. More specifically, an approximate four-point congruent set (4PCS) of temporal TLS surveys is first identified, based on affine invariant rules. Second, a set of correspondences among temporal TLS surveys were collected by matching multi-scale sparse features of the 3D neighbors, centered at the approximate 4PCS. Third, the correspondences were used to estimate a rigid motion between the overlapping TLS surveys for the coarse registration, according to which the initial TIR from temporal TLS surveys were identified. Finally, the rigid motion between temporal TLS was iteratively optimized, based on the point clouds, only from the TIR. Based on the fine-level registered TLS surveys, Digital Elevation Models (DEMs) can be generated to calculate the exploitative volume, through a DEM differential. We applied the proposed method to two open-pit mines in China, and also compared our method with five state-of-the-art methods for registering temporal TLS surveys. Experimental results indicated that the proposed method achieved a higher registration accuracy than the state-of-the-art methods. Based on the registered result, our method achieved a 98.03% overall accuracy for measuring the exploitative volume, compared to in-situ measurement.


Author(s):  
S. M. Yousefi ◽  
H. Arefi ◽  
A. Bahroudi

Abstract. Stability analysis and studying the geological features of rocks and mines have been active research topic for many years. Consequently, it is very important being prepared for probable hazards and having the ability to rescue from earth disasters, in particular in rocks and open pit mines. For this purpose, several methods have been used to measure fractures of a rock face. Among these methods are manual techniques, photogrammetric measurements, and laser scanning based techniques. With the proliferation of unmanned aerial vehicles (UAVs), these systems have been widely used in geological projects recently. Especially in the situation that the case study is very hard to be reached. In this paper, a method is developed to detect the most probable rock fall. After doing some pre-processing, RANSAC algorithm is used to fit planes to the point cloud. Then, intersections of these planes with the point cloud are computed. After some refinements on these intersections, the probable rockfalls are obtained. Point cloud analysis have some advantages over conventional image-based methods; especially in case of probable rock falls, which might be hard to detect using the rock images. However, analyzing point cloud data usually is complicated and computationally expensive.


2021 ◽  
Vol 13 (12) ◽  
pp. 6971
Author(s):  
Mikhail Zarubin ◽  
Larissa Statsenko ◽  
Pavel Spiridonov ◽  
Venera Zarubina ◽  
Noune Melkoumian ◽  
...  

This research article presents a software module for the environmental impact assessment (EIA) of open pit mines. The EIA software module has been developed based on the comprehensive examination of both country-specific (namely, Kazakhstan) and current international regulatory frameworks, legislation and EIA methodologies. EIA frameworks and methods have been critically evaluated, and mathematical models have been developed and implemented in the GIS software module ‘3D Quarry’. The proposed methodology and software module allows for optimised EIA calculations of open pit mines, aiming to minimise the negative impacts on the environment. The study presents an original methodology laid out as a basis for a software module for environmental impact assessment on atmosphere, water basins, soil and subsoil, tailored to the context of mining operations in Kazakhstan. The proposed software module offers an alternative to commercial off-the-shelf software packages currently used in the mining industry and is suitable for small mining operators in post-Soviet countries. It is anticipated that applications of the proposed software module will enable the transition to sustainable development in the Kazakh mining industry.


2020 ◽  
Author(s):  
Tomasz Lipecki

Abstract The article concerns the method of architectural inventory of the historic, wooden church in Mnichów (southern Poland), built in the 18th century. During hundreds of years of operation, structural changes can be seen in it, as well as in objects located above mining operations. The article explains the principles of inventory and describes the applied method of laser scanning, starting from the design to the creation of a 3D solid model of the object, paying particular attention to the analysis based on the created point cloud. Thanks to them, the area and volumes of all rooms were determined, the verticality of columns supporting the church levels was assessed, the floor level and verticality of walls were determined, as well as the shape and level of the roof edges. Based on the research, it can be concluded that the church, as an example of a wooden religious monument, is in good condition. The detected deformations in this range do not have a destructive effect on the current state of the object, but it should be subjected to control measurements in a cyclical manner. The laser scanning method used allowed for a wide and accurate scope of the study of the geometry of the church structure, without the need to disorganize its equipment.


2018 ◽  
Vol 36 ◽  
pp. 02008
Author(s):  
Anna Sołtys ◽  
Józef Pyra ◽  
Jan Winzer

Environmental protection law and geological and mining law require the mineral mining plant to protect its surroundings from the effects of mining operations. This also applies to the negative impact of vibrations induced by blasting works on people and construction facilities. Effective protection is only possible if the level of this impact is known, therefore it is necessary to record it. The thesis formulated in this way has been and continues to be the guiding principle of the research works carried out in the AGH Laboratory of Blasting Work and Environmental Protection. As a result of these works are procedures for conducting preventive activities by open-pit mines in order to minimize the impact of blasting on facilities in the surrounding area. An important element of this activity is the monitoring of vibrations in constructions, which is a source of knowledge for excavation supervisors and engineers performing blasting works, thus contributing to raising the awareness of the responsible operation of the mining plant. Developed in the Laboratory of the Mine's Vibration Monitoring Station (KSMD), after several modernizations, it became a fully automated system for monitoring and recording the impact of blasting works on the surrounding environment. Currently, there are 30 measuring devices in 10 open-pit mines, and additional 8 devices are used to provide periodic measurement and recording services for the mines concerned.


2020 ◽  
Author(s):  
Sam Thiele ◽  
Sandra Lorenz ◽  
Moritz Kirsch ◽  
Richard Gloaguen

<p>Hyperspectral imaging is a powerful tool for mapping mineralogy and lithology in core and outcrops, as many minerals show distinct spectral features in the commonly analysed visible, near, short-wave and long-wave infrared regions of the electromagnetic spectrum. High resolution ground and UAS (unmanned aerial system)-based sensors thus have significant potential as a tool for rapid and non-invasive geological mapping in mining operations, exploration campaigns and scientific research. However, the geometrical complexity of many outcrops (e.g. cliffs, open-pit mines) can result in significant technical challenges when acquiring and processing hyperspectral data. In this contribution we present updates to the previously published MEPHySTo python toolbox for correcting, georeferencing, projecting and analysing geometrically complex hyperspectral scenes. We showcase these methods using datasets covering volcanogenic massive sulphide (VMS) mineralisation exposed within open pit mines in Rio Tinto (Spain), and interpret possible structural and lithological controls on mineralization. Potential applications of hyperspectral mapping for grade control, outcrop mapping and the characterisation of different mineral deposit styles are also discussed.</p>


2011 ◽  
Vol 48 (11) ◽  
pp. 1601-1615 ◽  
Author(s):  
Martin Grenon ◽  
Amélie-Julie Laflamme

Using a case study, this paper presents an integrated methodology for assessing structural slope stability at the inter-ramp and bench levels. Robust algorithms have been developed and implemented to compute, at inter-ramp and bench levels, slope orientations and slope stability using input data compatible with a commercially available mine-design software tool database structure. Multi-criteria stability analyses were performed based on various design criteria. Susceptibility maps were produced enabling the identification of zones of concern in the designed pit. The obtained results suggest that inter-ramp angles do not present instability concerns over the entire pit surface. At bench levels, potential instability zones were identified within two structural domains totalling 6% of the total pit surface.


Sign in / Sign up

Export Citation Format

Share Document