scholarly journals Thermal performance evaluation of a high-density data centre for cooling system under fault conditions

2019 ◽  
Vol 111 ◽  
pp. 01043
Author(s):  
Jinkyun Cho ◽  
Beungyong Park ◽  
Yongdae Jeong ◽  
Sangmoon Lee

In this study, an actual 20 MW data centre project was analysed to evaluate the thermal performance of an IT server room during a cooling system outage under six fault conditions. In addition, a method of organizing and systematically managing operational stability and energy efficiency verification was identified for data centre construction in accordance with the commissioning process. It is essential to understand the operational characteristics of data centres and design optimal cooling systems to ensure the reliability of high-density data centres. In particular, it is necessary to consider these physical results and to perform an integrated review of the time required for emergency cooling equipment to operate as well as the back-up system availability time.

Author(s):  
Tianyi Gao ◽  
Emad Samadiani ◽  
Bahgat Sammakia ◽  
Roger Schmidt

Data centers consume a considerable amount of energy which is estimated to be about 2 percent of the total electrical energy consumed in the US, and their power consumption continues to increase every year. It is also estimated that roughly 30–40 percent of the total energy used in a data center is due to the thermal management systems. So, there is a strong need for better cooling methods which could improve the cooling capacity and also reduce energy consumption for high density data centers. In this regard, liquid cooling systems have been utilized to deal with demanding cooling and energy efficiency requirements in high density data centers. In this paper, a hybrid cooling system in data centers is investigated. In addition to traditional raised floor, cold aisle-hot aisle configuration, a liquid-air hybrid cooling system consisting of rear door heat exchangers attached to the back of racks is considered. The room is analyzed numerically using two CFD based simulation approaches for modeling rear door heat exchangers that are introduced in this study. The presented model is used in the second section of the paper to compare the hybrid cooling system with traditional air cooling systems. Several case studies are taken into account including the power increases in the racks and CRAC unit failure scenarios. A comparison is made between the hybrid cooling room and a purely air cooled room based on the rack inlet temperatures. Also in this study, total energy consumption by the cooling equipment in both air-cooled and hybrid data centers are modeled and compared with each other for different scenarios. The results show that under some circumstances the hybrid cooling could be an alternative to meet the ASHRAE recommended inlet air temperatures, while at the same time it reduces the cooling energy consumption in high density data centers.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6147
Author(s):  
Jinkyun Cho ◽  
Jesang Woo ◽  
Beungyong Park ◽  
Taesub Lim

Removing heat from high-density information technology (IT) equipment is essential for data centers. Maintaining the proper operating environment for IT equipment can be expensive. Rising energy cost and energy consumption has prompted data centers to consider hot aisle and cold aisle containment strategies, which can improve the energy efficiency and maintain the recommended level of inlet air temperature to IT equipment. It can also resolve hot spots in traditional uncontained data centers to some degree. This study analyzes the IT environment of the hot aisle containment (HAC) system, which has been considered an essential solution for high-density data centers. The thermal performance was analyzed for an IT server room with HAC in a reference data center. Computational fluid dynamics analysis was conducted to compare the operating performances of the cooling air distribution systems applied to the raised and hard floors and to examine the difference in the IT environment between the server rooms. Regarding operating conditions, the thermal performances in a state wherein the cooling system operated normally and another wherein one unit had failed were compared. The thermal performance of each alternative was evaluated by comparing the temperature distribution, airflow distribution, inlet air temperatures of the server racks, and recirculation ratio from the outlet to the inlet. In conclusion, the HAC system with a raised floor has higher cooling efficiency than that with a hard floor. The HAC with a raised floor over a hard floor can improve the air distribution efficiency by 28%. This corresponds to 40% reduction in the recirculation ratio for more than 20% of the normal cooling conditions. The main contribution of this paper is that it realistically implements the effectiveness of the existing theoretical comparison of the HAC system by developing an accurate numerical model of a data center with a high-density fifth-generation (5G) environment and applying the operating conditions.


Author(s):  
Kaneesamkandi M. Zakariya

Bottom ash from Municipal Waste fired boilers have sufficient heat content and this can be used to pre-heat the boiler feed water or the combustion air. A study of the recent developments in this area is done with a focus on the air based cooling method. Modeling and simulation of the thermal performance of an air cooled ash cooling system is done with the help of Gambit/Fluent software. Among several methods of waste disposal, incineration of Municipal Waste is opted mainly due to its energy potential and specific advantages like high volume reduction ratio and convenience in plant location. However, the inherent fuel qualities that confront this method are its high moisture and ash content and the consequent low calorific values. The fuel bed temperature in stoker fired incineration systems can reach up to 1200K and a considerable part of this heat is wasted by way of ash sensible heat loss. The methods used for ash cooling include the water cooled ash screw system, the rolling cylinder ash cooler, fluidized bed ash cooler and the high strength steel belt ash cooler. In this study, the simulation of the performance of water based and air based ash cooling systems is done for a certain municipal waste fired boiler. The effect of the two methods on the overall boiler efficiency is studied. Comparison of results with that of a working system indicates that air cooling systems can be as efficient as the water cooled systems. With the help of this study, bottom ash heat recovery, especially for waste fired boilers, will be appreciated better and power plant designers will have a better insight into this area.


1985 ◽  
Vol 107 (2) ◽  
pp. 136-140 ◽  
Author(s):  
M. L. Warren ◽  
M. Wahlig

Economic and thermal performance analysis is used to determine cost goals for typical commercial active solar cooling systems to be installed between the years 1986 and 2000. Market penetration for heating, ventilating, and air conditioning systems depends on payback period, which is related to the expected return on investment. Postulating a market share for solar cooling systems increasing to 20 percent by the year 2000, payback and return on investment goals as a function of year of purchase are established. The incremental solar system cost goals must be equal to or less than the 20-year percent value of future energy savings, based on thermal performance analysis, at the desired return on investment. The methodology is applied to determine the allowable incremental solar system cost for commercial-scale, 25-ton absorption cooling systems based on the thermal performance predicted by recent simulation analysis, Methods for achieving these cost goals and expected solar cooling system costs will be discussed.


2018 ◽  
Vol 140 ◽  
pp. 128-139 ◽  
Author(s):  
Xiaolei Yuan ◽  
Yu Wang ◽  
Jinxiang Liu ◽  
Xinjie Xu ◽  
Xiaohang Yuan

1983 ◽  
Vol 105 (2) ◽  
pp. 217-223
Author(s):  
M. L. Warren ◽  
M. Wahlig

Economic and thermal performance analyses of typical residential and commercial active solar cooling systems are used to determine cost goals for systems to be installed between the years 1986 and 2000. Market penetration for heating, ventilating, and air conditioning systems depends on payback period, which is related to the expected real return on investment. Postulating a market share for solar cooling systems increasing to 20 percent by the year 2000, payback and return on onvestment goals as a function of year of purchase are established. The incremental solar system cost goal must be equal to or less than the 20-year present value of future energy savings, based on thermal performance analysis, at the desired return on investment. Methods for achieving these cost goals and expected solar cooling system costs will be discussed.


1976 ◽  
Vol 98 (3) ◽  
pp. 335-346
Author(s):  
M. W. Larinoff ◽  
L. L. Forster

A new concept of power plant heat-sink system is presented which employs the combination of a conventional wet-tower and a conventional dry-tower. The purpose of this cooling system is to reduce wet cooling-tower makeup-water requirements in water-short areas. The dry tower operates all year around while the wet-peaking tower is used only above certain ambient dry-bulb temperatures. The two cooling circuits serve separate sections of a conventional, surface-type, steam condenser. Thermal performance analysis is presented for various combinations of cooling systems ranging from 100 percent wet to 100 percent dry. Annual makeup-water requirements are calculated for various sizes of towers located in 18 selected cities of the U.S.A. ranging from north to south and east to west.


2016 ◽  
Vol 846 ◽  
pp. 36-41
Author(s):  
Babak Fakhim ◽  
Masud Behnia ◽  
Steven W. Armfield

In this paper, a numerical analysis of flow and temperature distribution of a small raised-floor data centre is conducted in order to evaluate the thermal performance of the data centre. The flow patterns and temperature profiles established leads to a detailed exergy analysis of the data centre, which results in better understanding of irreversibilities in room airspace. The impact of the rack location in the data centre room and the airflow direction through perforated tiles on the thermal performance of the data centre is investigated using first-law and second-law of thermodynamics.


Author(s):  
Rohit Misra ◽  
Vikas Bansal ◽  
Ghanshyam Das Agarwal ◽  
Jyotirmay Mathur ◽  
Tarun Aseri

Earth air tunnel heat exchanger is a passive cooling device with advantageous feature to reduce energy consumption in buildings. Curtailing the electricity consumption of conventional vapor compression system based air-conditioner is a major concern especially in area with hot and dry weather conditions. The performance of conventional air-conditioners can substantially be enhanced by coupling these active cooling systems with passive cooling systems. In the present research, the thermal performance and energy conservation potential of hybrid cooling system has been investigated experimentally. An attempt has been made to enhance the thermal performance of active cooling system by coupling it with earth air tunnel heat exchanger (EATHE) in two different hybrid modes. The air which comes out of EATHE is relatively cooler than the ambient air and therefore can be used either for cooling the condenser tubes of a conventional window type air-conditioner or supplying it directly to the room being conditioned. The energy consumption of conventional 1.5TR window type air conditioner is found to be reduced by 16.11% when cold air from EATHE is completely used for condenser cooling.


Sign in / Sign up

Export Citation Format

Share Document