scholarly journals Membrane fouling control and cleaning technology of ceramic membrane treating wastewater

2019 ◽  
Vol 118 ◽  
pp. 04023
Author(s):  
Guoqiang Ma ◽  
Shoubin Zhang ◽  
Yanming Yang ◽  
Liping Qiu ◽  
Guicai Liu ◽  
...  

Ceramic membrane technique was a new and efficient technology for wastewater treatment and used more and more widely in recent years. Controlling membrane fouling was the key method to ensure the efficient and stable operation of ceramic membrane. In this paper, the causes, influencing factors and control methods of ceramic membrane fouling were summarized. As one of the most effective means to control membrane fouling, several common membrane cleaning methods, such as physical cleaning, chemical cleaning, ultrasonic cleaning and combined cleaning, were introduced. And the application of ceramic membrane cleaning was presented too. Then the future directions for ceramic membrane techniquresearching was prospected.

Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 545 ◽  
Author(s):  
Rathmalgodage Thejani Nilusha ◽  
Tuo Wang ◽  
Hongyan Wang ◽  
Dawei Yu ◽  
Junya Zhang ◽  
...  

The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.


2020 ◽  
Vol 194 ◽  
pp. 04048
Author(s):  
Xinyi Zuo ◽  
Shoubin Zhang ◽  
Guoqiang Ma ◽  
Ying Lv ◽  
Peng Li

In this paper, while ceramic membrane fouling and its causes were introduced, the calculation of ceramic membrane fouling resistance, membrane fouling analysis methods and several common ceramic membrane cleaning techniques were summarized. In this process, some factors affecting the cleaning effect were also analyzed by enumerating cases, and the future development of ceramic membrane was prospected.


Author(s):  
Xiaolin Jia ◽  
Kuiling Li ◽  
Baoqiang Wang ◽  
ZhiChao Zhao ◽  
Deyin Hou ◽  
...  

Abstract As a thermally induced membrane separation process, membrane distillation (MD) has drawn more and more attention for the advantages of treating hypersaline wastewaters, especially the concentrate from reverse osmosis (RO) process. One of the major obstacles in widespread MD application is the membrane fouling. We investigated the feasibility of direct contact membrane distillation (DCMD) for landfill leachate reverse osmosis concentrate (LFLRO) brine treatment and systematically assessed the efficiency of chemical cleaning for DCMD after processing LFLRO brine. The results showed that 80% water recovery rate was achieved when processing the LFLRO brine by DCMD, but the membrane fouling occurred during the DCMD process, and manifested as the decreasing of permeate flux and the increasing of permeate conductivity. Analysis revealed that the serious flux reduction was primarily caused by the fouling layer that consist of organic matters and inorganic salts. Five cleaning methods were investigated for membrane cleaning, including hydrogen chloride (HCl)-sodium hydroxide (NaOH), ethylene diamine tetraacetic acid (EDTA)-NaOH, critic acid, sodium hypochlorite (NaClO) and sodium dodecyl sulphate (SDS) cleaning. Among the chemical cleaning methods investigated, the 3 wt.% SDS cleaning showed the best efficiency at recovering the performance of fouled membranes.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 846
Author(s):  
Aysegul Gul ◽  
Jakub Hruza ◽  
Fatma Yalcinkaya

Membrane fouling is one of the main drawbacks encountered during the practical application of membrane separation processes. Cleaning of a membrane is important to reduce fouling and improve membrane performance. Accordingly, an effective cleaning method is currently of crucial importance for membrane separation processes in water treatment. To clean the fouling and improve the overall efficiency of membranes, deep research on the cleaning procedures is needed. So far, physical, chemical, or combination techniques have been used for membrane cleaning. In the current work, we critically reviewed the fouling mechanisms affecting factors of fouling such as the size of particle or solute; membrane microstructure; the interactions between membrane, solute, and solvent; and porosity of the membrane and also examined cleaning methods of microfiltration (MF) membranes such as physical cleaning and chemical cleaning. Herein, we mainly focused on the chemical cleaning process. Factors affecting the chemical cleaning performance, including cleaning time, the concentration of chemical cleaning, and temperature of the cleaning process, were discussed in detail. This review is carried out to enable a better understanding of the membrane cleaning process for an effective membrane separation process.


2008 ◽  
Vol 57 (3) ◽  
pp. 457-463 ◽  
Author(s):  
C. Brepols ◽  
K. Drensla ◽  
A. Janot ◽  
M. Trimborn ◽  
N. Engelhardt

Systematically testing alternative cleaning agents and cleaning procedures on a large scale municipal membrane bioreactor, the Erftverband optimized the cleaning strategies and refined the original cleaning procedures for the hollow fiber membranes in use. A time-consuming, intensive ex-situ membrane cleaning twice a year was initially the regular routine. By introducing the effective means of cleaning in place in use today, which employs several acidic and oxidative/alkaline cleaning steps, intensive membrane cleaning could be delayed for years. An overview and an assessment of various cleaning strategies for large scale plants are given.


2017 ◽  
Vol 75 (8) ◽  
pp. 1982-1989 ◽  
Author(s):  
Ruijun Zhang ◽  
Shengnan Yuan ◽  
Wenxin Shi ◽  
Cong Ma ◽  
Zhiqiang Zhang ◽  
...  

With the purpose of improving the ultrafiltration (UF) efficiency, anionic polyacrylamide (APAM) has been used as a coagulant aid in the flocculation-UF process. In this study, the impact of APAM on UF efficiency has been investigated with regard to membrane fouling, membrane cleaning and effluent quality. The results indicated that the optimal dosage of APAM had positive impacts on membrane fouling control, membrane cleaning and effluent quality. According to the flux decline curve, scanning electron microscopy and contact angle characterization, the optimal dosage of APAM was determined to be 0.1 mg/L coupled with 2 mg/L (as Al3+) poly-aluminium chloride. Under this optimal condition, membrane fouling can be mitigated because of the formation of a porous and hydrophilic fouling layer. APAM in the fouling layer can improve the chemical cleaning efficiency of 0.5% NaOH due to the disintegration of the fouling layer when APAM is dissolved under strong alkaline conditions. Furthermore, with the addition of APAM in the flocculation-UF process, more active adsorption sites can be formed in the flocs as well as the membrane fouling layer, thus more antipyrine molecules in the raw water can be adsorbed and removed in the flocculation-UF process.


2017 ◽  
Vol 76 (11) ◽  
pp. 3160-3170 ◽  
Author(s):  
Wanzhu Zhang ◽  
Lin Wang ◽  
Bingzhi Dong

Abstract The fouling behavior during forward osmosis (FO) was investigated. Tannic acid was used as a model organic foulant for natural organic matter analysis since the main characteristics are similar, and calcium ions were added at different concentrations to explore the anti-pollution capability of FO membranes. The initial permeate flux and calcium ions strength were varied in different operating conditions to describe membrane fouling with membrane cleaning methods. The observed flux decline in FO changed dramatically with the type of foulant and the type of draw solution used to provide the osmotic driving force. Calcium ions aggravated membrane fouling and decreased transmembrane flux. Membrane cleaning methods included physical and physicochemical approaches, and there was no obvious difference among the typical cleaning methods (i.e., membrane flushing with different types of cleaning fluids at various crossflow velocities and backwashing with varying osmotic driving forces) with respect to flux recovery. Ultrasonic cleaning damaged the membrane structure and decreased permeate flux, and reverse diffusion of salt from the draw solution to the feed side accelerated after cleaning.


2021 ◽  
Author(s):  
Sarah Shim

During the past decade, the growth in membrane research and technology has advanced and multiplied in usage for many industries including water and wastewater. A major limitation of the application is due to membrane fouling. In this work, the construction, start-up calibration and testing of a membrane unit, as well as an examination into the fouling and cleaning aspect of the ceramic membranes are investigated. An aqueous solution containing precipitate is fed to the unit in order to observe fouling behaviour. Effluent wastewater from a bioreactor, CUBEN, is also tested with the unit and membrane cleaning is performed using various chemical agents. For both chemically enhanced backwash (CEB) and membrane soaking, hydrochloric acid cleaning agent «1 %w) produces best flux recoveries of 72.7% and 82%, respectively. All permeate effluent analysis, resulted in a suspended solids concentration <3 mgIL and turbidities. < 1 NTU, which both meet Ontario regulation limits.


2021 ◽  
Author(s):  
Sarah Shim

During the past decade, the growth in membrane research and technology has advanced and multiplied in usage for many industries including water and wastewater. A major limitation of the application is due to membrane fouling. In this work, the construction, start-up calibration and testing of a membrane unit, as well as an examination into the fouling and cleaning aspect of the ceramic membranes are investigated. An aqueous solution containing precipitate is fed to the unit in order to observe fouling behaviour. Effluent wastewater from a bioreactor, CUBEN, is also tested with the unit and membrane cleaning is performed using various chemical agents. For both chemically enhanced backwash (CEB) and membrane soaking, hydrochloric acid cleaning agent «1 %w) produces best flux recoveries of 72.7% and 82%, respectively. All permeate effluent analysis, resulted in a suspended solids concentration <3 mgIL and turbidities. < 1 NTU, which both meet Ontario regulation limits.


2021 ◽  
Author(s):  
Sarah Shim

During the past decade, the growth in membrane research and technology advanced and multiplied in usage for many industries including water and wastewater. A major limitation of the application is due to membrane fouling. In this work, the construction, start-up calibration and testing of a membrane unit as well as an examination into the fouling and cleaning aspect of the ceramic membranes are investigated. An aqueous solution containing precipitate is fed to the unit in order to observe fouling behaviour. Effluent wastewater from a bioreactor, CUBEN, is also tested with the unit and membrane cleaning is performed using various chemical agents. For both chemically enhanced backwash (CEB) and membrane soaking, hydrochloric acid cleaning agent (<1%w) produces best flux recoveries of 72.7% and 82%, respectively. All permeate effluent analysis, resulted in a suspended solids concentration <3mg/L and turbidities <1NTU, which both meet Ontario regulation limits.


Sign in / Sign up

Export Citation Format

Share Document