scholarly journals Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 846
Author(s):  
Aysegul Gul ◽  
Jakub Hruza ◽  
Fatma Yalcinkaya

Membrane fouling is one of the main drawbacks encountered during the practical application of membrane separation processes. Cleaning of a membrane is important to reduce fouling and improve membrane performance. Accordingly, an effective cleaning method is currently of crucial importance for membrane separation processes in water treatment. To clean the fouling and improve the overall efficiency of membranes, deep research on the cleaning procedures is needed. So far, physical, chemical, or combination techniques have been used for membrane cleaning. In the current work, we critically reviewed the fouling mechanisms affecting factors of fouling such as the size of particle or solute; membrane microstructure; the interactions between membrane, solute, and solvent; and porosity of the membrane and also examined cleaning methods of microfiltration (MF) membranes such as physical cleaning and chemical cleaning. Herein, we mainly focused on the chemical cleaning process. Factors affecting the chemical cleaning performance, including cleaning time, the concentration of chemical cleaning, and temperature of the cleaning process, were discussed in detail. This review is carried out to enable a better understanding of the membrane cleaning process for an effective membrane separation process.

Author(s):  
Xiaolin Jia ◽  
Kuiling Li ◽  
Baoqiang Wang ◽  
ZhiChao Zhao ◽  
Deyin Hou ◽  
...  

Abstract As a thermally induced membrane separation process, membrane distillation (MD) has drawn more and more attention for the advantages of treating hypersaline wastewaters, especially the concentrate from reverse osmosis (RO) process. One of the major obstacles in widespread MD application is the membrane fouling. We investigated the feasibility of direct contact membrane distillation (DCMD) for landfill leachate reverse osmosis concentrate (LFLRO) brine treatment and systematically assessed the efficiency of chemical cleaning for DCMD after processing LFLRO brine. The results showed that 80% water recovery rate was achieved when processing the LFLRO brine by DCMD, but the membrane fouling occurred during the DCMD process, and manifested as the decreasing of permeate flux and the increasing of permeate conductivity. Analysis revealed that the serious flux reduction was primarily caused by the fouling layer that consist of organic matters and inorganic salts. Five cleaning methods were investigated for membrane cleaning, including hydrogen chloride (HCl)-sodium hydroxide (NaOH), ethylene diamine tetraacetic acid (EDTA)-NaOH, critic acid, sodium hypochlorite (NaClO) and sodium dodecyl sulphate (SDS) cleaning. Among the chemical cleaning methods investigated, the 3 wt.% SDS cleaning showed the best efficiency at recovering the performance of fouled membranes.


2019 ◽  
Vol 118 ◽  
pp. 04023
Author(s):  
Guoqiang Ma ◽  
Shoubin Zhang ◽  
Yanming Yang ◽  
Liping Qiu ◽  
Guicai Liu ◽  
...  

Ceramic membrane technique was a new and efficient technology for wastewater treatment and used more and more widely in recent years. Controlling membrane fouling was the key method to ensure the efficient and stable operation of ceramic membrane. In this paper, the causes, influencing factors and control methods of ceramic membrane fouling were summarized. As one of the most effective means to control membrane fouling, several common membrane cleaning methods, such as physical cleaning, chemical cleaning, ultrasonic cleaning and combined cleaning, were introduced. And the application of ceramic membrane cleaning was presented too. Then the future directions for ceramic membrane techniquresearching was prospected.


Author(s):  
М.К. Джубари ◽  
Н.В. Алексеева

Многие отрасли промышленности ежедневно производят большие объемы сточных вод, содержащих органические соединения, неорганические соли и взвешенные примеси. Неотъемлемой частью современных промышленных очистных сооружений является система мембранной очистки. Область применения мембранных процессов разделения ограничены рядом требований: отсутствие взвешенных частиц в обрабатываемых водных растворах, имеется ряд ограничений в кислотности и температуре разделяемых растворов. Одной из важнейших задач в обеспечении рентабельности всего процесса обработки является длительный срок службы мембран, которого возможно достичь предотвращением обрастания поверхности мембран. Наиболее распространенным процессом очистки вод является обратноосмотический процесс разделения. В работе рассмотрен процесс осадкообразования на обратноосмотических мембранах, особое внимание уделяется химической очистке. Проведен анализ работ, посвященных вопросу обрастания обратноосмотических мембран в различных растворах. Рассмотрены различные конструкции мембранных элементов, описан механизм переноса через обратноосмотическую мембрану, учитывая явления концентрационной поляризации у поверхности мембраны. Подробно описаны различные способы борьбы с загрязнением мембран в промышленных сточных водах: предварительная обработка, очистка мембран и модификация поверхности. Авторы резюмируют, что состав исходного раствора является важным фактором, влияющим на производительность обратноосмотической установки. Кроме того, предварительная обработка водных растворов перед процессом обратноосмотического разделения приводит к уменьшению обрастания мембранной поверхности и значительно увеличивает срок службы мембранного элемента. Эффективно в качестве процесса предварительной обработки использовать процесс ультрафильтрационного разделения. Many industries produce large volumes of wastewater on a daily basis containing organic compounds, inorganic salts and suspended impurities. An integral part of modern industrial treatment facilities is a membrane cleaning system. The application area of membrane separation processes is limited by a number of requirements: the absence of suspended particles in the treated aqueous solutions, there are a number of limitations in the acidity and temperature of the separated solutions. One of the most important concerns in ensuring the cost-effectiveness of the entire processing process is the long membrane life, which can be achieved by preventing fouling of the membrane surface. The most common water treatment process is the reverse osmosis separation process. The paper considers the process of sedimentation on reverse osmosis membranes, with special attention paid to chemical cleaning. The analysis of works devoted to the issue of fouling of reverse osmosis membranes in various solutions is carried out. Various designs of membrane elements are considered, the mechanism of transfer through a reverse osmosis membrane is described, taking into account the phenomena of concentration polarization at the membrane surface. Various methods for controlling membrane fouling in industrial wastewater are described in detail: pretreatment, membrane cleaning and surface modification. The authors summarize that the composition of the initial solution is an important factor affecting the performance of a reverse osmosis system. In addition, the pretreatment of aqueous solutions before the reverse osmosis separation process leads to a decrease in fouling of the membrane surface and significantly increases the service life of the membrane element. It is effective to use an ultrafiltration separation process as a pretreatment process.


2017 ◽  
Vol 23 (2) ◽  
pp. 218-230 ◽  
Author(s):  
Xiaoying Zhu ◽  
Renbi Bai

Background: Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The “cold” separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. Methods: A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. Results: The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Conclusion: Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field.


2005 ◽  
Vol 51 (6-7) ◽  
pp. 181-192 ◽  
Author(s):  
Z. Lewandowski ◽  
H. Beyenal

The goal of this presentation is to identify biofouling mechanisms that cause undesirable effects to the membrane separation processes of flux decline and pressure drop. The underlying assumption of this presentation is that biofouling is unavoidable and that the operator cannot eliminate it entirely. This premise justifies research efforts toward understanding the mechanisms by which biofouling affects the membrane processes, rather than expecting that technology can entirely eliminate membrane biofouling in the near future. An improved understanding of biofouling mechanisms may lead to better membrane design, better membrane modules, and better membrane cleaning procedures.


2017 ◽  
Vol 128 ◽  
pp. 59-72 ◽  
Author(s):  
Lei Hou ◽  
Kui Gao ◽  
Ping Li ◽  
Ximing Zhang ◽  
Zhan Wang ◽  
...  

2017 ◽  
Vol 34 (1) ◽  
Author(s):  
Rakesh Baghel ◽  
Sushant Upadhyaya ◽  
Kailash Singh ◽  
Satyendra P. Chaurasia ◽  
Akhilendra B. Gupta ◽  
...  

AbstractThe main aim of this article is to provide a state-of-the-art review of the experimental studies on vacuum membrane distillation (VMD) process. An introduction to the history of VMD is carried out along with the other membrane distillation configurations. Recent developments in process, characterization of membrane, module design, transport phenomena, and effect of operating parameters on permeate flux are discussed for VMD in detail. Several heat and mass transfer correlations obtained by various researchers for different VMD modules have been discussed. The impact of membrane fouling with its control in VMD is discussed in detail. In this paper, temperature polarization coefficient and concentration polarization coefficient are elaborated in detail. Integration of VMD with other membrane separation processes/industrial processes have been explained to improve the performance of the system and make it more energy efficient. A critical evaluation of the VMD literature is incorporated throughout this review.


2017 ◽  
Vol 75 (8) ◽  
pp. 1982-1989 ◽  
Author(s):  
Ruijun Zhang ◽  
Shengnan Yuan ◽  
Wenxin Shi ◽  
Cong Ma ◽  
Zhiqiang Zhang ◽  
...  

With the purpose of improving the ultrafiltration (UF) efficiency, anionic polyacrylamide (APAM) has been used as a coagulant aid in the flocculation-UF process. In this study, the impact of APAM on UF efficiency has been investigated with regard to membrane fouling, membrane cleaning and effluent quality. The results indicated that the optimal dosage of APAM had positive impacts on membrane fouling control, membrane cleaning and effluent quality. According to the flux decline curve, scanning electron microscopy and contact angle characterization, the optimal dosage of APAM was determined to be 0.1 mg/L coupled with 2 mg/L (as Al3+) poly-aluminium chloride. Under this optimal condition, membrane fouling can be mitigated because of the formation of a porous and hydrophilic fouling layer. APAM in the fouling layer can improve the chemical cleaning efficiency of 0.5% NaOH due to the disintegration of the fouling layer when APAM is dissolved under strong alkaline conditions. Furthermore, with the addition of APAM in the flocculation-UF process, more active adsorption sites can be formed in the flocs as well as the membrane fouling layer, thus more antipyrine molecules in the raw water can be adsorbed and removed in the flocculation-UF process.


2017 ◽  
Vol 76 (11) ◽  
pp. 3160-3170 ◽  
Author(s):  
Wanzhu Zhang ◽  
Lin Wang ◽  
Bingzhi Dong

Abstract The fouling behavior during forward osmosis (FO) was investigated. Tannic acid was used as a model organic foulant for natural organic matter analysis since the main characteristics are similar, and calcium ions were added at different concentrations to explore the anti-pollution capability of FO membranes. The initial permeate flux and calcium ions strength were varied in different operating conditions to describe membrane fouling with membrane cleaning methods. The observed flux decline in FO changed dramatically with the type of foulant and the type of draw solution used to provide the osmotic driving force. Calcium ions aggravated membrane fouling and decreased transmembrane flux. Membrane cleaning methods included physical and physicochemical approaches, and there was no obvious difference among the typical cleaning methods (i.e., membrane flushing with different types of cleaning fluids at various crossflow velocities and backwashing with varying osmotic driving forces) with respect to flux recovery. Ultrasonic cleaning damaged the membrane structure and decreased permeate flux, and reverse diffusion of salt from the draw solution to the feed side accelerated after cleaning.


Author(s):  
Lukka Thuyavan Yogarathinam ◽  
Ahmad Fauzi Ismail ◽  
Pei Sean Goh ◽  
Arthanareeswaran Gangasalam

Membrane separation processes have been deployed for downstream applications in biorefineries. This article discusses the challenges of membrane technology in purification of biofuels such as bioethanol, biodiesel and biogas. The significance of membrane technology are discussed towards the fractionation of lignocellulosic biomass for biofuel production.  The membrane reactors for biodiesel production were also studied. Limitation with respect to each individual processes on biofuel purification were also reported. The major limitation in membrane separation are membrane fouling and concentration polarization. Membrane engineering and process optimization are the viable tools to enhance the performance of membrane. Recently, inorganic nanofillers has significant control in alteration of polymeric membrane characteristics for the improvement of permeability and selectivity. This article would be an insight for researchers to understand the challenges of biorefinery membrane separation.


Sign in / Sign up

Export Citation Format

Share Document