scholarly journals Identification of areas of emergence of critical flow regimes of nonlinear viscous liquids in a tubular reactor

2019 ◽  
Vol 124 ◽  
pp. 05046
Author(s):  
S.A. Livshits ◽  
N.A. Yudina ◽  
T.U. Dunaeva ◽  
E.K. Nikolaeva ◽  
S.R. Enikeeva

The mathematical model describing heat-mass transfer in rheologically complex media in a tubular reactor is developed in the article. Using the example of the continuous production scheme for grade B2 polymethacrylate, solutions of the characteristic equations confirming the possibility of emergence the critical flow regimes for certain sets of control parameters were obtained.

2020 ◽  
Vol 5 (3) ◽  
pp. 49-61
Author(s):  
Andrii Cheilytko ◽  
◽  
Sergii Ilin

The development and application of new, more efficient dust collection units that will help reduce emissions and conserve some very valuable resources for production is an important area of research. With the growth of innovation in technological enterprises, the number of harmful emissions into the atmosphere is growing. Thus, the ecological condition of the environment deteriorates. The basic analytical dependences which are necessary for construction of a technique of carrying out experiments and calculations of dust catching for concrete working conditions are developed. Methods of calculating cyclones as vortex devices and research of cyclone operation for air purification from dust were investigated. On the basis of the used basic theoretical positions of heat and mass transfer and thermodynamics at carrying out analytical researches the mathematical model was offered. Calculations of new designs of modern cyclones to obtain their geometric dimensions, resistance and dust capture efficiency were presented. Modern cyclones are designed to more effectively remove dust from the air during various types of work.


Author(s):  
Rachael McCarty ◽  
S. Nima Mahmoodi ◽  
Keith Williams

An original sliding mode controller is designed, based on an existing mathematical model for response control of the human vestibular system. The human vestibular system is located in the inner ear and significantly contributes to the functions of detecting head motion, maintaining balance and posture, and realizing gaze stabilization. The vestibular system sends signals to the brain to tell it how the head and body are moving, and the brain reacts by changing eye position accordingly. The nonlinearities of the vestibular system are not completely understood. The biggest nonlinearity is the nystagmus, a bouncing of the eyes to compensate for quick head movement. Another nonlinearity is that the quick phase does not start until head movement reaches a certain frequency. Considering these nonlinearities as well as the uncertainties of the system, sliding mode control a good choice for controlling the system. Several mathematical models of the human vestibular system are considered for use in the control design. The best model of those considered is chosen based on the models’ consideration of nonlinearities and their levels of complexity. The mathematical model used in this paper is a nonlinear transfer function. The output is controlled with a robust sliding mode controller. Results demonstrate the need to increase control parameters as frequency of the sinusoidal input increases to minimize overshoot error. However, since the human head cannot tolerate an infinitely large frequency input, control parameters also will necessarily be limited. Therefore, results show that the designed sliding mode robust controller is an effective mechanism for controlling the mathematical model of the human vestibular system.


2011 ◽  
Vol 421 ◽  
pp. 98-101
Author(s):  
Ting Yue Hao

The pressure pipeline is simplified as the beam model with two simple supported ends. The mathematical model is established, considering influence of the fluid-solid coupling vibration. Then the critical flow velocity is obtained by calculation and solving. By analyzing the practical numerical example,the influence of physical parameters on the first three-order natural frequency is discussed. Using Matlab software for programming, the instability condition of pressure pipeline is obtained, which is consistent with the result of numerical calculation.


2016 ◽  
Vol 20 (2) ◽  
pp. 81-89
Author(s):  
Monika Gwadera

AbstractThe aim of this paper is to present the adsorption chillers technology. The operating principle of these systems, the adsorbent-adsorbate pairs that are frequently applied and the enhancement techniques that allow improvement of their efficiency are presented. Analysis of the mass transfer and principles of mathematical modeling of such systems are also discussed. In the further part of the text, the results of experimental studies and comparison of these results with calculations based on the mathematical model of adsorption were presented.


2014 ◽  
Vol 989-994 ◽  
pp. 3100-3104
Author(s):  
Rui Hang Zhang ◽  
Zi Ye Wang ◽  
Run Ping Niu

TA mathematical model describing heat and mass transfer performance of packed-type parallel flow dehumidifier was set up. The numerical solution of differential equations was derived. Taking the heat and mass transfer coefficients obtained by experiments as the input parameters of the model, the impact of solution inlet parameters on outlet parameter of air was described. The simulation results indicated that the mathematical model could be used to predict the performance of liquid dehumidification. The results showed that the mathematical model can be of great value in the design and improvement of dehumidifier.


1999 ◽  
Vol 64 (5-6) ◽  
pp. 317-340 ◽  
Author(s):  
Miodrag Maksimovic ◽  
Konstantin Popov

1. Introduction 2. Mass transfer in the steady state periodic condition 2.1. Reversing current 2.2. Pulsating current 2.3. Alternating current superimposed on direct current 3. The influence of the charge and discharge of the electrical double layer 4. The validity of the mathematical model 4.1. Reversing current in the millisecond range 4.2. Reversing current in the second range 4.3. Pulsating current 4.4. Pulsating overpotential 5. Conclusion


2018 ◽  
Vol 82 (1) ◽  
Author(s):  
Наталья Николаевна Сороковая ◽  
Дмитрий Николаевич Коринчук

Разработана математическая модель и численный метод расчета динамики тепломассопереноса, фазовых превращений и усадки при сушке коллоидных капиллярно-пористых тел цилиндрической формы в условиях равномерного обдува теплоносителем. Математическая модель строилась на базе дифференциального уравнения переноса субстанции (энергии, массы, импульса) в деформируемых системах. Проведены экспериментальные исследования кинетики обезвоживания частиц энергетической вербы в потоке воздуха с целью верификации математической модели. Обоснована возможность ее использования для расчета совместных процессов сушки и начального этапа термического разложения биомассы. С использованием ранее полученных данных по значениям энергии активации Аэф(Т) для различных видов биомассы проведено математическое моделирование динамики и кинетики высокотемпературной сушки в потоке дымовых газов энергетической вербы, которая сопровождается термодеструкцией гемиоцеллюлозы. Результаты численных экспериментов свидетельствуют об адекватности предложенного подхода, эффективности математической модели и метода ее реализации. На их основе возможно проводить исследование динамики тепломассопереноса при сушке частиц различных видов измельченной биомассы; определение температуры начала и окончания первой стадии термического разложения; момента достижения равновесного влагосодержания в зависимости от свойств материала и сушильного агента. Эти данные позволяют выбирать оптимальные с точки зрения сохранения энергии и качества высушиваемого продукта  режимные параметры процесса.         A mathematical model and a numerical method for calculating the dynamics of heat and mass transfer, phase transformations and shrinkage during the drying of colloidal capillary-porous cylindrical bodies under conditions of equitable winding by a coolant are developed. The mathematical model was based on the differential equation of substance (energy, mass, impulse) transfer in deformable systems. It includes the equations diffusion-filtration transfer of energy for the system as a whole, and the mass transfer of the liquid, vapor and air phases in the pores of the body. Expressions for the intensity of evaporation of a liquid, capillary pressure, and the diffusion coefficients are presented. The relative volume strain was found by means of an analytical solution of the thermoconcentration deformation equation. Based on the explicit three-layer counting difference scheme and the procedure splitting of algorithm  by physical factors, a numerical method for realizing this mathematical model is developed.Experimental studies of the kinetics of dehydration of energy willow particles in the airflow were carried out to verify the mathematical model. Its applicability for calculating combined processes of drying and of the initial stage of thermal decomposition of biomass is substantiated. Using the previously obtained data on the activation energy values for various types of biomass, a mathematical simulation of the dynamics and kinetics of high-temperature drying in the flue gas flow of energy willow was carried out, which is accompanied by thermal destruction of hemiocellulose. The results of numerical experiments indicate the adequacy of the proposed approach, the effectiveness of the mathematical model and the method of its implementation. On their basis, it is possible to study the dynamics of heat and mass transfer when drying particles of different types of ground biomass; determination of the temperature of the beginning and ending of the first stage of thermal decomposition; the moment when the equilibrium moisture content is reached, depending on the properties of the material and the drying agent. These data allow choosing the process parameters that are optimal in terms of energy saving and quality of the dried product.


2019 ◽  
Vol 23 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Mounir Asli ◽  
Frank Brachelet ◽  
Alexis Chauchois ◽  
Emmanuel Antczak ◽  
Didier Defer

In this paper, the coupled heat and mass transfer within porous media has been studies. First, the studied materials have been characterized experimentally and than evaluated their thermal properties, namely thermal conductivity and specific heat in different states (dry-wet). The hygroscopic properties, namely water vapour permeability, water vapour sorption. At second time, we present and validate the mathematical model describing heat and mass transfer within bio-based materials, by the confrontation with the experimental results. The materials properties obtained from the characterisation part are used as model?s input parameters. Moreover, a test facility is mounted in the laboratory in order to compare the numerical and experimental data. The founded results show a good concordance between the simulated and measured data. According to this results the mathematical model of Philip and de Vries gives a good prediction of hygrothermal behaviour of bio-based material. This model will allow us to save money and time of the experimental part in the future.


Author(s):  
Dmitriy V. Guzei ◽  
Andrey V. Minakov ◽  
Vasiliy I. Panteleev ◽  
Maksim I. Pryazhnikov ◽  
Dmitriy V. Platonov ◽  
...  

The mathematical model of heat and mass transfer processes in the combustion chamber of diesel generator units with valve inductor generators has been developed. The mathematical model takes into account the actual geometry of the combustion chamber and the operating conditions of the diesel engine. A study of the main characteristics of a diesel generator in a wide range of modes of operation has been carried out. In addition to energy characteristics, environmental parameters have been considered


2018 ◽  
Vol 245 ◽  
pp. 04008
Author(s):  
Andrey Kotlov ◽  
Leonid Kuznetsov ◽  
Boris Hrustalev

We developed a mathematical model for determining the parameters of mass transfer in the compressor chambers during the processes of compression and discharge. The mass flow rates through the end and radial gaps were determined. Also we analyzed the processes of mass transfer in a clamped volume. We investigated the influence of the number of vanes on the compressor efficiency, taking into account changes in the compressor geometric parameters. We established that overflows through the end surfaces of rotor mainly affect the compressor performance. In order to reduce overflows during the period of discharge, it was proposed to increase the angle of closure of the discharge window at a fixed angle of its opening. The mathematical model allows one to make recommendations on the choice of the optimal number of vanes for a particular design.


Sign in / Sign up

Export Citation Format

Share Document