scholarly journals Study on Safety Benchmark Value of Monitoring and Early Warning for Large Section Highway Tunnels

2019 ◽  
Vol 136 ◽  
pp. 04024
Author(s):  
Yuwen Wang ◽  
Xiang Yang Cui ◽  
Hongyan Guo ◽  
Ke Li

Taking several tunnels under construction of a highway as the research object, the ultimate displacement of four buried depth sections of 0-50, 50-100, 100-300, 300-500 m in the surrounding rock of grade III, IV and V is numerically simulated by three-step and seven-step excavation method, middle-wall method, cross-middle-wall method and double-side-wall guide pit method for initial support of large-section highway tunnels. Through analysis, the deformation law of tunnel surrounding rock is obtained: under the same buried depth, the displacement ultimate displacement of the two-sided guide pit method and the cross-middle-wall method is the largest, the middle-wall method is the second, and the three-step seven-step excavation method is the smallest. Through the analysis and collation of the measured data obtained by monitoring and measurement of each construction method in the construction site, the surrounding rock deformation datum values of large-span and large-section tunnel under each construction method are obtained.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhi Lin ◽  
Xiang Chen ◽  
Hongyun Yang ◽  
Chongguo Cheng ◽  
Huasong Wang ◽  
...  

The construction of urban underground cross-interchange transfer subway stations often encounters the difficulties of shallow-buried, different surrounding rock, large spans and heights, congested road traffic, and surrounding buildings sensitive to the construction sequence. Therefore, there is a need for an underground project that controls the stability of underground space and ground subsidence. Based on the construction difficulties of a certain station (the maximum excavation area over 760 m2), this paper conducts a comprehensive selection design of the structure, construction mechanics response, and control technology of this type of interchange station structure and construction excavation. First of all, based on the design experience of large-scale underground transfer transportation engineering and taking full consideration of the stratum conditions, an “arch-wall” cross transfer structure method is proposed. The refined numerical analysis shows that the structure can fully utilize the stratum conditions to reduce the ground surface settlement. Then, in view of the stability of surrounding rock during the construction of a large section, based on the traditional large section excavation method, a construction method of “cross rock beam + heading method” was proposed. In order to verify the effect of the construction method, the three-dimensional detailed numerical model was used to simulate the construction conditions, and the mechanical response characteristics and displacement changes of surrounding rock under each excavation step are explored. Simultaneous interpreting with the traditional large section excavation method, the results show that the new method has advantages in controlling the stability of the surrounding rock. Meanwhile, in order to ensure the safe construction of the project, the self-developed multifunctional engineering test system for traffic tunnels is used to carry out a large-scale physical model experiment to simulate the entire process of the “arch-wall” cross transfer structure construction response characteristics. By analyzing the data of measuring points, the results show that the structure form and the excavation method cause the ground surface settlement, stress, and structural forces meet the requirements for safe construction. Finally, the station can be safely constructed under the new structure form and construction method. Therefore, the structure form and method proposed in this paper can be adapted to the large-scale underground structure under construction in complex environments.


2019 ◽  
Vol 136 ◽  
pp. 04021
Author(s):  
Zhihua Yang ◽  
Rumiao He ◽  
Ke Li ◽  
Hongyan Guo

When the Xiaojiazhai tunnel is constructed by the double-wall method, different curvature radii have different effects on controlling the stability of the surrounding rock and speeding up the construction progress. By numerically simulating the tunnel excavation under different radius of curvature, it is concluded that R is adopted respectively. The deformation displacement of surrounding rock is =11.6m∠520 and R=5.76m∠1060. The maximum horizontal displacement and vertical displacement are smaller when R=5.76m∠1060 is selected. According to the analysis results, when R=5.76m∠1060 is selected, the deformation of surrounding rock can be controlled to ensure the safety of construction and provide reference for future construction.


2018 ◽  
Vol 42 (3) ◽  
pp. 20170243 ◽  
Author(s):  
Cong Liu ◽  
Shucai Li ◽  
Zongqing Zhou ◽  
Liping Li ◽  
Kang Wang ◽  
...  

2019 ◽  
Vol 136 ◽  
pp. 04020
Author(s):  
Jun Duan ◽  
Canrong Huang ◽  
Xiangyang Cui ◽  
Ke Li ◽  
Hongyan Guo

According to the surrounding rock conditions of Re Shuitang Tunnel NO.2, it is analyzed whether the CRD method is suitable for such surrounding rock conditions. By comparing and analyzing the distribution of plastic zone of surrounding rock during construction and the displacement deformation of tunnel monitoring point, the tunnel is constructed. The plastic zone of the middle arch and the arch is obviously changed, and should be reinforced. The settlement of the right vault and the side wall is larger than the left side, which is about 19.8% and 21.9%. According to the analysis results, the vault should be reinforced in advance during tunnel construction to prevent collapse and ensure construction safety, and provide reference for future construction.


2014 ◽  
Vol 580-583 ◽  
pp. 997-1000 ◽  
Author(s):  
Zhi Jie Sun

To research the deformation regularity of large section loess tunnel in construction procession with different construction methods, 3D Numerical Simulation is applied and the large-section loess tunnel of highway is taken as an example. Comparing deformation regularity of surrounding rock in three types of construction method conditions, the research results show that:The CRD method takes precedence in the condition of the convergence of surrounding rock is large. The both sides heading method takes precedence in the condition of ground surface settlement is large.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Minglei Sun ◽  
Yongquan Zhu ◽  
Xinzhi Li ◽  
Zhengguo Zhu ◽  
Benguo He

In hard cataclastic surrounding rock with high geostress, the rock monomer strength is high and the rock is broken, and tunnel excavation in it is apt to cause large deformation, collapsing, and breaking, causing initial support crack and even intruding of the initial support deformation. The characteristics of the support system under different support parameters and shapes are analyzed, and the reasonable support section shape and support parameters are determined. The results showed that (1) under the condition of high geostress and hard cataclastic surrounding rock, the initial support deformation is large, the horizontal convergence is much larger than the settlement of arch, and the deformation duration is relatively short; (2) the distribution of pressure and stress in initial support are very uneven on the cross-section and greatly affected by the construction process; (3) in the case of large horizontal tectonic stress, the use of large curvature side wall support is beneficial to improve the quality of support and control the deformation of the structure, especially to improve the stress of concrete; (4) the closure time of the supporting system greatly influences the stress state and deformation, so it is necessary to shorten the length of the lower bench and the distance of the invert as possible so as to close the support as early as possible; (5) different location of the tunnel surrounding rock stress distribution is very uneven, the measured value is much larger than calculated value in level III based on the specification of surrounding rock; (6) under high strength and ground stress, the initial supporting stress of steel frame increases rapidly, and the measured stress is larger. This indicates that the steel frame structure bears heavy early load. Therefore, the stiffness of the steel frame should be as large as possible to meet the loading requirements.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2012 ◽  
Vol 524-527 ◽  
pp. 360-363
Author(s):  
Shou Yi Dong ◽  
Qi Tao Duan ◽  
Fu Lian He ◽  
Qi Li ◽  
Hong Jun Jiang

The coal side deformation and sliding can not be effectively controlled by use of the traditional bolt or cable support in the high stress crushed surrounding rock and large section roadway. For solving this problem, the new prestressed truss support technology is put forward, and its supporting principles of roof and two walls are stated. The mechanical model of cable-channel steel truss is established, and then the tensile strength of the cable and the maximum deflection of the channel steel are derived. By way of field investigation, mechanics theory analysis and actual production condition, the scheme is defined and applied in the replacement roadway. Measurement results of surrounding rock behavior show that the coal side displacement is no more than 254mm and the roof convergence is less than 172mm. Apparent economic and technical profits have been achieved.


Sign in / Sign up

Export Citation Format

Share Document