Construction Technology and Deformation Law of the Surrounding Rock in the Fork Road of a Large Section Tunnel

Author(s):  
Hua-zhe Jiao ◽  
Teng-fei Dong ◽  
Xin-ming Chen ◽  
Feng-bin Chen ◽  
Jin-xing Wang
2018 ◽  
Vol 42 (3) ◽  
pp. 20170243 ◽  
Author(s):  
Cong Liu ◽  
Shucai Li ◽  
Zongqing Zhou ◽  
Liping Li ◽  
Kang Wang ◽  
...  

2019 ◽  
Vol 136 ◽  
pp. 04024
Author(s):  
Yuwen Wang ◽  
Xiang Yang Cui ◽  
Hongyan Guo ◽  
Ke Li

Taking several tunnels under construction of a highway as the research object, the ultimate displacement of four buried depth sections of 0-50, 50-100, 100-300, 300-500 m in the surrounding rock of grade III, IV and V is numerically simulated by three-step and seven-step excavation method, middle-wall method, cross-middle-wall method and double-side-wall guide pit method for initial support of large-section highway tunnels. Through analysis, the deformation law of tunnel surrounding rock is obtained: under the same buried depth, the displacement ultimate displacement of the two-sided guide pit method and the cross-middle-wall method is the largest, the middle-wall method is the second, and the three-step seven-step excavation method is the smallest. Through the analysis and collation of the measured data obtained by monitoring and measurement of each construction method in the construction site, the surrounding rock deformation datum values of large-span and large-section tunnel under each construction method are obtained.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bole Sun ◽  
Xiaorong Tang ◽  
Yongyi He ◽  
Mingnian Wang

Collapse of the vault and numerous other safety accidents often occur during the construction process of large-section tunnels. The utilization of a small pilot tunnel and a step reverse expansion construction methodology is proposed based on conventional construction methods to explore safe construction technology. First, a theoretical analysis combined with on-site monitoring parameters was conducted. It showed that the maximum displacement of the tunnel surrounding rock was 0.027 m during the elastic stage and increased to 0.031 m during the strength limit stage. The overall surrounding rock deformation does not have a noticeable impact on tunnel safety. A numerical simulation model of the small pilot tunnel advancement and step reverse expansion method was established. Simulation results showed that the first two excavation steps caused 89.6% of the total overlining strata subsidence, and the use of a small pilot tunnel advancement and step reverse expansion method can enhance the tunnel support. The tunnel surrounding rock was adequately stabilized after using this excavation method and provides the in-situ conditions for expanding the pilot tunnel to the large-section tunnel. The proposed method was adopted in an actual engineering project. It protected the subsequent construction of the main tunnel and decreased construction time, saving construction costs while ensuring safety, reducing construction risks, and improving production efficiency. This research can guide similar tunneling projects.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


2012 ◽  
Vol 524-527 ◽  
pp. 360-363
Author(s):  
Shou Yi Dong ◽  
Qi Tao Duan ◽  
Fu Lian He ◽  
Qi Li ◽  
Hong Jun Jiang

The coal side deformation and sliding can not be effectively controlled by use of the traditional bolt or cable support in the high stress crushed surrounding rock and large section roadway. For solving this problem, the new prestressed truss support technology is put forward, and its supporting principles of roof and two walls are stated. The mechanical model of cable-channel steel truss is established, and then the tensile strength of the cable and the maximum deflection of the channel steel are derived. By way of field investigation, mechanics theory analysis and actual production condition, the scheme is defined and applied in the replacement roadway. Measurement results of surrounding rock behavior show that the coal side displacement is no more than 254mm and the roof convergence is less than 172mm. Apparent economic and technical profits have been achieved.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lina Luo ◽  
Gang Lei ◽  
Haibo Hu

Highway tunnel plays an increasingly prominent role in the development of high-grade highway traffic in mountainous countries or regions. Therefore, it is necessary to explore the deformation characteristics of the surrounding rock of a six-lane multiarch tunnel under different excavation conditions. Using the three-dimensional indoor model test and finite element analysis, this paper studies the dynamic mechanical behavior of a six-lane construction, reveals the whole process of the surrounding rock deformation process of class II surrounding rock under different excavation conditions, and puts forward the best construction and excavation method. The results show that the maximum displacement rate of excavation scheme III is the largest, and the maximum displacement rate of excavation scheme I is basically the same as that of excavation scheme II. Therefore, in terms of controlling the displacement rate of the surrounding rock, the effect of excavation scheme I is basically the same as that of excavation scheme II, while that of excavation scheme III is poor. In terms of construction technology, scheme II is simpler than scheme I and can ensure the integrity of the secondary lining. Therefore, in class II surrounding rock of the supporting project, it is recommended to adopt scheme II for construction.


2020 ◽  
Vol 2020 ◽  
pp. 1-20 ◽  
Author(s):  
Tong Liu ◽  
Yujian Zhong ◽  
Zhihua Feng ◽  
Wei Xu ◽  
Feiting Song ◽  
...  

As a typical granular bulk medium, problems are common in boulder-cobble mixed grounds, such as easy collapse and instability and difficult effective support for large-section tunnel excavation. Tunnels constructed in BCM grounds are rare still, and there is a big gap between the design and construction of tunnels. Based on the Nianggaicun highway tunnel crossing the BCM grounds, the construction technology of tunnel in BCM grounds is studied by means of literature investigation and field survey. Here are the main conclusions: the overall deformation of surrounding rock is quite small; the pressure distribution of surrounding rock is small and loose pressure is dominant, and the safety reserve of secondary lining is large. The deformation process of surrounding rock concentrates on the construction stage. During the construction process, there are many problems, such as serious overexcavation, difficulty of bolt penetration, and continuous rock fall. In this paper, a three-bench complementary cyclic excavation method is proposed, which replaces the original CD and CRD methods. Meanwhile, the supporting system is optimized. The results show that the disturbance of surrounding rock is reduced, while the safety of construction process and the reliability of structure are increased. The new excavation method and optimized supporting system are expected to fill the gap between design and construction of tunnel in BCM grounds and provide reference for construction of such tunnels in the future.


2013 ◽  
Vol 838-841 ◽  
pp. 1441-1446
Author(s):  
Chao Yue Zhou ◽  
Yong Fang ◽  
Ya Peng Fu ◽  
Ge Cui

It is a challenge to deal with karst in the construction of large cross-section tunnel. Under the background of Shuangbei Highway Tunnel, a new kind of grouting technology is introduced. According to hydrogeology, field tests are carried out to select grouting materials and proportion of mixture. Combined with the project practice, grouting construction technology is discussed such as grouting equipments, grouting parameters, operation technique, grouting ending standards. It has been proved that the technology is effective in tunnel construction.


Sign in / Sign up

Export Citation Format

Share Document