scholarly journals Hazards associated with syngas storage

2019 ◽  
Vol 137 ◽  
pp. 01022 ◽  
Author(s):  
Katarzyna Stolecka ◽  
Andrzej Rusin

Energy needs of many countries are largely covered by energy obtained from fossil fuels. This in turn involves environmental pollution and greenhouse gas emissions. The growing environmental awareness and the need to prevent climate changes mean that clean energy and alternative energy sources are still a significant research issue. One of the most important technologies for efficient and low-carbon energy generation is the gasification process and synthesis gas production. Worldwide, there are now more than 270 such installations. More installations are under construction. Syngas is a mixture of hydrogen and carbon monoxide. Depending on the feedstock, it can also contain smaller amounts of carbon dioxide, methane and nitrogen. The gasification process consists of four stages: syngas production, storage, transport and utilization, e.g. as fuel. Because syngas is mainly composed of flammable and toxic gases, in the event of an uncontrolled release into the atmosphere these processes may pose a potential hazard to humans and the environment. The paper presents the results of analyses related to hazards resulting from an uncontrolled release of gas at the stage of the gas storage, before it is transported or finally used. Hazard scenarios are presented and the probability of their occurrence as well as the consequences for humans and the environment are determined.

2016 ◽  
Vol 19 (3) ◽  
pp. 96-109
Author(s):  
Phung Thi Kim Le ◽  
Viet Tan Tran ◽  
Thien Luu Minh Nguyen ◽  
Viet Vuong Pham ◽  
Truc Thanh Nguyen ◽  
...  

Finding alternative energy sources for fossil fuels was a global matter of concern, especially in developing countries. Rice husk, an abundant biomass in Viet Nam, was used to partially replace fossil fuels by gasification process. The study was conducted on the pilot plant fixed bed up-draft gasifier with two kind of gasification agents, pure air and air-steam mixture. Mathematical modeling and computer simulations were also used to describe and optimize the gasification processes. Mathematical modeling was based on Computational Fluid Dynamics method and simulation was carried by using Ansys Fluent software. Changes in outlet composition of syngas components (CO, CO2, CH4, H2O, H2) and temperature of process, in relation with ratio of steam in gasification agents, were presented. Obtained results indicated concentration of CH4, H2 in outlet was increased significantly when using air-steam gasification agents than pure air. The discrepancies among the gasification agents were determined to improve the actual process.


Author(s):  
Ghulamullah Maitlo ◽  
Rasool Bux Mahar ◽  
Zulfiqar Ali Bhatti ◽  
Imran Nazir

The interest in the thermochemical conversion of biomass for producer gas production since last decade has increased because of the growing attention to the application of sustainable energy resources. Application of biomass resources is a valid alternative to fossil fuels as it is a renewable energy source. The valuable gaseous product obtained through thermochemical conversion of organic material is syngas, whereas the solid product obtained is char. This review deals with the state of the art of biomass gasification technologies and the quality of syngas gathered through the application of different gasifiers along with the effect of different operating parameters on the quality of producer gas. Main steps in gasification process including drying, oxidation, pyrolysis and reduction effects on syngas production and quality are presented in this review. An overview of various types of gasifiers used in lignocellulosic biomass gasification processes, fixed bed and fluidized bed and entrained flow gasifiers are discussed. The effects of various process parameters such as particle size, steam and biomass ratio, equivalence ratio, effects of temperature, pressure and gasifying agents are discussed. Depending on the priorities of several researchers, the optimum value of different anticipated productivities in the gasification process comprising better quality syngas production improved lower heating value, higher syngas production, improved cold gas efficiency, carbon conversion efficiency, production of char and tar have been reviewed.


2021 ◽  
Vol 22 (2) ◽  
pp. 10-20
Author(s):  
Amadou Dioulde Donghol Diallo ◽  
Ma’an Fahmi Rashid Alkhatib ◽  
Md Zahangir Alam ◽  
Maizirwan Mel

Empty fruit bunch (EFB), a biomass-based waste, was deemed a potential replacement for fossil fuel. It is renewable and carbon neutral. The efficient management of this potential energy will help to deal with the problem associated with fossil fuels. However, a key parameter for evaluating the quality of raw material (EFB) as a fuel in energy applications is the calorific value (CV). When this CV is low, then its potential utilization as feedstock will be restricted. To tackle this shortcoming, we propose to add municipal solid waste to enhance energetic value. Thus, two major issues will be solved: managing solid residues and contributing an alternative energy source. This study aimed to investigate the possibility of mixing EFB and municipal solid waste (MSW) to make clean energy that is conscious of the environment (climate change) and sustainable development. The selected MSW, comprising of plastics, textiles, foam, and cardboard, were mixed, with EFB at various ratios. Proximate analysis was used to determine moisture content, ash, volatiles, and fixed carbon, whilst elemental analysis, is used to determine CHNS/O for MSW, EFB and their various mixtures. The CV of each element was also measured. The research revealed a significant increase in the calorific value of EFB by mixing it with MSW according to MSW/EFB ratios: 0.25; 0.42; 0.66; 1.00 and 1.50 the corresponding calorific values in (MJ/kg) were 19.77; 21.22; 22.67; 27.04 and 28.47 respectively. While the calorific value of pure EFB was 16.86 MJ/kg, the mixing of EFB with MSW promoted the increase in the CV of EFB to an average of 23.83MJ/kg. Another potential environmental benefit of applying this likely fuel was the low chlorine (0.21 wt. % to 0.95 wt. %) and sulfur concentrations (0.041 wt. % to 0.078 wt.%). This potential fuel could be used as solid refuse fuel (SRF) or refuse-derived fuel (RDF) in a pyrolysis or gasification process with little to no environmental effects. ABSTRAK: Tandan buah kosong (EFB), sisa berasaskan biojisim, adalah berpotensi sebagai pengganti bahan bakar fosil. Ia boleh diperbaharui dan karbon neutral. Pengurusan berkesan pada potensi tenaga ini dapat membantu mengatasi masalah melibatkan bahan bakar fosil. Namun, kunci parameter bagi menilai kualiti bahan mentah (EFB) sebagai bahan bakar dalam aplikasi tenaga adalah nilai kalori (CV). Apabila CV rendah, potensi menjadi stok suapan adalah terhad. Sebagai penyelesaian, kajian ini mencadangkan sisa pepejal bandaran ditambah bagi meningkatkan nilai tenaga. Oleh itu, dua isu besar dapat diselesaikan: mengurus sisa pepejal dan menambah sumber tenaga alternatif. Kajian ini bertujuan mengkaji potensi campuran tandan buah kosong (EFB) dan sisa pepejal bandaran (MSW) bagi menghasilkan tenaga bersih dari sudut persekitaran (perubahan iklim) dan pembangunan lestari. Pemilihan MSW, terdiri daripada plastik, tekstil, gabus dan kadbod, dicampurlan dengan pelbagai nisbah EFB. Analisis proksimat telah digunakan bagi mendapatkan  kandungan kelembapan, abu, ruapan, dan karbon tetap, manakala analisis asas telah digunakan bagi mendapatkan CHNS/O bersama MSW, EFB dan pelbagai campuran lain. Nilai kalori (CV) setiap elemen turut diukur. Dapatan kajian menunjukkan penambahan ketara dalam nilai kalori EFB dengan campuran bersama MSW berdasarkan nisbah MSW/EFB 0.25; 0.42; 0.66; 1.00 dan 1.50 nilai kalori sepadan (MJ/kg) adalah 19.77; 21.22; 22.67; 27.04 dan 28.47 masing-masing. Manakala nilai kalori EFB tulen adalah 16.86 MJ/kg, campuran EFB dan MSW menunjukkan kenaikan CV dengan EFB pada purata 23.83MJ/kg. Antara potensi semula jadi lain adalah dengan mencampurkan bahan bakar ini dengan kalori rendah (0.21 wt. % kepada 0.95 wt. %) dan kepekatan sulfur (0.041 wt. % kepada 0.078 wt.%). Bahan bakar ini berpotensi sebagai bahan bakar pepejal sampah (SRF) atau bahan bakar yang terhasil dari pepejal sampah (RDF) melalui proses pirolisis atau proses gasifikasi yang sedikit atau tiada kesan langsung terhadap persekitaran.


2012 ◽  
Vol 476-478 ◽  
pp. 824-827 ◽  
Author(s):  
Wen Bao

Sichuan Province faces several development challenges including those linked to climate change. Energy usage in Sichuan Province, for example, is already constrained because of a range of development challenges (energy availability; access; affordability of alternative energy sources; and a range of health impacts, including air pollution). There calls for a transition to a low carbon energy options. Although the major obstacles preventing people from discontinuing domestic traditional biomass fuels or coal combustion are poverty, the ready availability and social acceptability of energy options cannot be underrated. This paper therefore highlights some of the persistent challenges associated with sustainable energy transitions in Sichuan Province. We aim to explore how renewable and low-carbon energies can maintain sustainable rural energy development and partially replace fossil fuels development in rural areas of Sichuan Province and thereby serve as mitigation options is a possible future transition towards a low-carbon system relying on renewable and low-carbon energies.


Author(s):  
Kau-Fui Vincent Wong ◽  
Guillermo Amador

As society continues advancing into the future, more energy is required to supply the increasing population and energy demands. Unfortunately, traditional forms of energy production through the burning of carbon-based fuels are dumping harmful pollutants into the environment, resulting in detrimental, and possibly irreversible, effects on our planet. The burning of coal and fossil fuels provides energy at the least monetary cost for countries like the US, but the price being paid through their negative impact of our atmosphere is difficult to quantify. A rapid shift to clean, alternative energy sources is critical in order to reduce the amount of greenhouse gas emissions. For alternative energy sources to replace traditional energy sources that produce greenhouse gases, they must be capable of providing energy at equal or greater rates and efficiencies, while still functioning at competitive prices. The main factors hindering the pursuit of alternative sources are their high initial costs and, for some, intermittency. The creation of electrical energy from natural sources like wind, water, and solar is very desirable since it produces no greenhouse gases and makes use of renewable sources—unlike fossil fuels. However, the planning and technology required to tap into these sources and transfer energy at the rate and consistency needed to supply our society comes at a higher price than traditional methods. These high costs are a result of the large-scale implementation of the state-of-the-art technologies behind the devices required for energy cultivation and delivery from these unorthodox sources. On the other hand, as fossil fuel sources become scarcer, the rising fuel costs drive overall costs up and make traditional methods less cost effective. The growing scarcity of fossil fuels and resulting pollutants stimulate the necessity to transition away from traditional energy production methods. Currently, the most common alternative energy technologies are solar photovoltaics (PVs), concentrated solar power (CSP), wind, hydroelectric, geothermal, tidal, wave, and nuclear. Because of government intervention in countries like the US and the absence of the need to restructure the electricity transmission system (due to the similarity in geographical requirements and consistency in power outputs for nuclear and traditional plants), nuclear energy is the most cost competitive energy technology that does not produce greenhouse gases. Through the proper use of nuclear fission electricity at high efficiencies could be produced without polluting our atmosphere. However, the initial capital required to erect nuclear plants dictates a higher cost over traditional methods. Therefore, the government is providing help with the high initial costs through loan guarantees, in order to stimulate the growth of low-emission energy production. This paper analyzes the proposal for the use of nuclear power as an intermediate step before an eventual transition to greater dependence on energy from wind, water, and solar (WWS) sources. Complete dependence on WWS cannot be achieved in the near future, within 20 years, because of the unavoidable variability of these sources and the required overhaul of the electricity transmission system. Therefore, we look to nuclear power in the time being to help provide predictable power as a means to reduce carbon emissions, while the other technologies are refined and gradually implemented in order to meet energy demand on a consistent basis.


2021 ◽  
Author(s):  
Zeynu Shamil Awol ◽  
Rezika Tofike Abate

Abstract Biomass energy is renewable energy source that comes from the material of plants and animals. Forms of biomass energy are bio-ethanol, bio methanol, and biodiesel. Bio-ethanol is one of the most important alternative energy sources that substitute the fossil fuels. The focus of this research is to produce bio-ethanol from waste office paper. Five laboratory experiments were conducted to produce bio-ethanol from wastepaper. The wastepaper was dried in oven and cut in to pieces. Then it passed through dilute acid hydrolysis, fermentation and distillation process respectively. High amount of ethanol was observed at 20 ml/g (liquid to solid ratio) and at the time of 2hr. Cost and economic analysis for ethanol production from wastepaper was performed. Results from the analysis indicated a paper to ethanol plant was feasible from the economic point of view with rate of return (RR) 38.61% and the payback period of 2.2 years.


Author(s):  
Kathleen Araújo

The discovery of oil in Pennsylvania in 1859 was a relatively inconspicuous precursor to what would become an epic shift into the modern age of energy. At the time, the search for “rock oil” was driven by a perception that lighting fuel was running out. Advances in petrochemical refining and internal combustion engines had yet to occur, and oil was more expensive than coal. In less than 100 years, oil gained worldwide prominence as an energy source and traded commodity. Along similar lines, electricity in the early 1900s powered less than 10% of the homes in the United States. Yet, in under a half a century, billions of homes around the world were equipped to utilize the refined form of energy. Estimates indicate that roughly 85% of the world’s population had access to electricity in 2014 (World Bank, n.d.b). For both petroleum and electricity, significant changes in energy use and associated technologies were closely linked to evolutions in infrastructure, institutions, investment, and practices. Today, countless decision-makers are focusing on transforming energy systems from fossil fuels to low carbon energy which is widely deemed to be a cleaner, more sustainable form of energy. As of 2016, 176 countries have renewable energy targets in place, compared to 43 in 2005 (Renewable Energy Policy Network for the 21st Century [REN21], 2017). Many jurisdictions are also setting increasingly ambitious targets for 100% renewable energy or electricity (Bloomberg New Energy Finance [BNEF], 2016). In 2015, the G7 and G20 committed to accelerate the provision of access to renewables and efficiency (REN21, 2016). In conjunction with all of the above priorities, clean energy investment surged in 2015 to a new record of $329 billion, despite low, fossil fuel prices. A significant “decoupling” of economic and carbon dioxide (CO2) growth was also evident, due in part to China’s increased use of renewable energy and efforts by member countries of the Organization for Economic Cooperation and Development (OECD) to foster greater use of renewables and efficiency (REN21, 2016).


Author(s):  
Nick Jelley

‘Why do we need renewables?’ describes the dangers of fossil fuels and explains the importance of renewable energy as an alternative. It shows that the use of fossil fuels causes global warming and climate change, leading to widespread concern, and also to a growing realization of the harm caused by the air pollution from coal burning and from internal combustion engines in cars and lorries. These threats are causing a switch away from fossil fuels to renewables that is gaining impetus from the growing awareness of the increased intensity and frequency of extreme weather seen in recent years. This transition is also being aided by the falling price of clean energy from renewables, in particular, solar and wind farms, which will become the dominant sources. The area of land or sea required for these farms is readily available, as are the back-ups required to handle their variability. Alternative supplies of low-carbon energy are examined. In the Paris Agreement in 2015, it was recognized that carbon dioxide emissions must reach net-zero by 2050 to avoid dangerous climate change.


2018 ◽  
Vol 182 ◽  
pp. 01018
Author(s):  
Sławomir Wierzbicki ◽  
Michał Śmieja

The limited resources of fossil fuels, as well as the search for a reduction in emissions of carbon dioxide and other toxic compounds to the atmosphere have prompted the search for new, alternative energy sources. One of the potential fuels which may be widely used in the future as a fuel is biogas which can be obtained from various types of raw materials. The article presents selected results as regards the effects of the proportion of biogas of various compositions on the course of combustion in a dual-fuel diesel engine with a Common Rail fuel system. The presented study results indicate the possibility for the use of fuels of this type in diesel engines; although changes are necessary in the manner of controlling liquid fuel injection.


2017 ◽  
Vol 22 (4) ◽  
pp. 805-836 ◽  
Author(s):  
Gerard van der Meijden ◽  
Sjak Smulders

The energy transition from fossil fuels to alternative energy sources has important consequences for technological change and resource extraction. We examine these consequences by incorporating a nonrenewable resource and an alternative energy source in a market economy model of endogenous growth through expanding varieties. During the energy transition, technological progress is nonmonotonic over time: It declines initially, starts increasing when the economy approaches the regime shift, and jumps down once the resource stock is exhausted. A moment of peak-oil does no longer necessarily occur, and simultaneous use of the resource and the alternative energy source will take place if the return to innovation becomes too low. Subsidies to research and development (R&D) and to renewables production speed up the energy transition, whereas a tax on fossil fuels postpones the switch to renewable energy.


Sign in / Sign up

Export Citation Format

Share Document