scholarly journals Novel rapid measurement system of undisturbed soils water characteristics curve utilizing the continuous pressurization method

2019 ◽  
Vol 92 ◽  
pp. 07008 ◽  
Author(s):  
Adel Alowaisy ◽  
Noriyuki Yasufuku ◽  
Ryohei Ishikura ◽  
Masanori Hatakeyama ◽  
Shuu Kyono

Through this paper, a sampling methodology and a novel full automatic system adopting the continuous pressurization method which is capable of determining the Soil Water Characteristics Curve (SWCC) for both remoulded and undisturbed samples in a very short time were developed. The proposed system was validated by comparing the SWCCs of standard testing soils obtained using the developed system to the SWCCs obtained using a conventional method. Remoulded and undisturbed natural soil samples were tested, where the degree of disturbance influence on the obtained SWCC was discussed. In addition, the undisturbed samples containing moulds material influence on the obtained SWCC was investigated. It was found that remoulded samples do not properly represent the in-situ conditions with significant error that should be carefully considered when conducting analysis and proposing countermeasures against unsaturated soils related Geo-disasters. In addition, the material which the containing mould is made from has minor influence on the obtained SWCC which can be neglected. Finally, it can be concluded that the developed undisturbed soil water characteristics curve obtaining system is direct, rapid, reliable and simple. In addition, the proposed undisturbed sampling and testing methodology can be used to accurately evaluate the spatial variations of the SWCC regardless the heterogeneity of the soil profile.

Author(s):  
Pan Hu ◽  
Qing Yang ◽  
Maotian Luan

The soil-water characteristic curve (SWCC) is a widely used experimental means for assessing fundamental properties of unsaturated soils for a wide range of soil suction values. The study of SWCC is helpful because some properties of unsaturated soils can be predicted from it. Nowadays, much attention has been paid to the behaviours of highly compacted bentonite-sand mixtures used in engineering barriers for high level radioactive nuclear waste disposal. It is very important to study the various performances of bentonite-sand mixtures in order to insure the safety of high-level radioactive waste (HLW) repository. After an introduction to vapor phase method and osmotic technique, a laboratory study has been carried out on compacted bentonite-sand mixtures. The SWCC of bentonite-sand mixtures has been obtained and analyzed. The results show that the vapor phase method and osmotic technique is suitable to the unsaturated soils with high and low suction.


Soil Research ◽  
1969 ◽  
Vol 7 (2) ◽  
pp. 79 ◽  
Author(s):  
AJ Peck

Air bubbles in soil water affect both hydraulic conductivity and moisture content at a given capillary potential. Consequently changes in the volume of entrapped air, which are not included in the specification of relationships between hydraulic conductivity, moisture content, and capillary potential, will affect all soil-water interactions. Current understanding of the process of air bubble entrapment during infiltration suggests that, in nature, significant air entrapment will often occur. It is shown that infiltrating water can dissolve only a very small volume of air, much less than the amount usually entrapped. Air bubbles in saturated soils are unstable since their pressure must exceed atmospheric, resulting in a diffusive flux of dissolved air from bubbles to menisci contacting the external atmosphere. However, stable bubbles are possible in unsaturated soils. Bubbles which are constrained by pore architecture to non-spherical shapes are usually stable, and spherical bubbles can be stable when the magnitude of the capillary potential exceeds about 3 bars. An approximate analysis of the characteristic time of bubble equilibration indicates that, in an example, it is of order 104 sec, but it may be greater or less by at least a factor 10. Since the equilibration time will be often at least as large as the period of significant soil temperature changes, it cannot be assumed that the entrapped air in a field soil is in an equilibrium state. In such circumstances unstable bubbles may be quasi-permanent. It is suggested that the slow growth of entrapped bubbles may account for the anomalously slow release of water observed in some outflow experiments. Changes of entrapped air volume may also account for the reported dependence of soil-water characteristics on the magnitude of the steps of capillary potential.


Soil Research ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 477 ◽  
Author(s):  
J Sierra

An investigation of in situ N mineralization, using undisturbed soil samples, indicated a negative relationship between the mineral N content [(NO3+NH4)-N] at the beginning of the experiment and the mineral N produced during it. This suggests that a maximum value of mineral N accumulation in intact soil cores could be calculated from the relationship between mineral N content and N mineralization rate. This value would be related to the size of the mineralizable N pool. If this hypothesis is true, the amount of mineralizable N could be estimated from in situ incubations and utilized in the modelling of N mineralization in the field. The aim of this work was to verify this hypothesis. The relationship between the mineral N content and the N mineralization rate was analysed for in situ and laboratory incubations of disturbed and undisturbed soil samples. A negative relationship between the two variables was only obtained for the experiments carried out with undisturbed samples (in the field and laboratory incubations) when the soil moisture content was not limiting for N mineralization. Futhermore, in undisturbed samples, a negative relationship between mineralization rates of consecutive incubation periods was observed, i.e. the soil sample producing relatively more, during a given period, produced relatively less in the following period. This relationship suggests a feedback mechanism operating in N mineralization which would be related to a mineralization-immobilization process in soil microsites. Thus, the N mineralization pattern was more complex than that described by initial hypothesis. The possible consequence of this feedback mechanism on in situ N dynamics is discussed.


2012 ◽  
Vol 9 (1) ◽  
pp. 301-336 ◽  
Author(s):  
S. S. W. Mavimbela ◽  
L. D. van Rensburg

Abstract. Soil water characteristic curve (SWCC) and unsaturated hydraulic conductivity (K-coefficient) are critical hydraulic properties governing soil water activity on layered soils. Sustainable soil water conservation would not be possible without accurate knowledge of these hydraulic properties. Infield rainwater harvesting (IRWH) is one conservation technique adopted to improve the soil water regime of a number of clay soils found in the semi arid areas of Free State province of South Africa. Given that SWCC is much easier to measure, most soil water studies rely on SWCC information to predict in-situ K-coefficients. This work validated this practice on the Tukulu, Sepane and Swartland layered soil profiles. The measured SWCC was first described using Brooks and Corey (1964), van Genuchten (1980) and Kasugi (1996) parametric models. The conductivity functions of these models were then required to fit in-situ based K-coefficients derived from instantaneous profile method (IPM). The same K-coefficient was also fitted by HYDRUS 1-D using optimised SWCC parameters. Although all parametric models fitted the measured SWCC fairly well their corresponding conductivity functions could not do the same when fitting the in-situ based K-coefficients. Overestimates of more than 2 orders of magnitude especially at low soil water content (SWC) were observed. This phenomenon was pronounced among the upper horizons that overlaid a clayey horizon. However, optimized α and n parameters using HYDRUS 1-D showed remarkable agreement between fitted and in-situ K-coefficient with root sum of squares error (RMSE) recording values not exceeding unity. During this exercise the Brooks and Corey was replaced by modified van Genuchten model (Vogel and Cislerova, 1988) since it failed to produce unique inverse solutions. The models performance appeared to be soil specific with van Genuchten-Mualem (1980) performing fairly well on the Orthic and neucutanic horizons while its modified form fitted very well the prismatic and pedo-cutanic horizons. The lognormal distribution model of Kasugi (1996) showed an extraordinary good fit among the Swartland profile horizons especially the saprolite rock layer. It was therefore concluded that in-situ KL-coefficient estimates from SWCC parameters could be acceptable if only rough estimates were required. Optimization of parameters for in-situ conditions especially for HYDRUS 1-D carried much prospects in characterising the hydraulic properties of most of the layered soils earmarked for IRWH in the province.


2020 ◽  
Vol 42 (3) ◽  
pp. 248-262
Author(s):  
Mehdi Mebarki ◽  
Toufik Kareche ◽  
Sabah Benyahia ◽  
Feth-Ellah Mounir Derfouf ◽  
Nabil Abou-Bekr ◽  
...  

AbstractThis article presents the results of experimental work carried out both in situ (coring; pressuremeter test) and in the laboratory (drying-wetting and oedometric tests) to describe the volumetric behavior on drying-wetting path of a swelling clayey soil of eastern Algeria. In order to perform drying-wetting tests the osmotic technique and saturated salts solutions were used. These suction-imposed methods have gained widespread acceptance as reliable methods for imposing suction on soil specimens. They allowed to sweep a wide range of suctions between 0 and 500 MPa. The ability to impose suction on soil specimens allows for drying and wetting stress paths to be applied to evaluate resulting changes in state parameters (void ratio, degree of saturation and water content). These paths were carried out on specimens with different initial states. Slurries of soil were used to characterize the reference behavior, while the undisturbed soil samples allow to describe the behavior of material under in situ conditions. In the last part of this article and to specify the behavior observed in the saturated domain, a comparison between the resulting deformations of the drying-wetting test and those resulting from the oedometric test was made.


Author(s):  
H. Arroyo ◽  
E. Rojas ◽  
M.L. Pérez-Rea ◽  
J. Horta ◽  
J. Arroyo

Author(s):  
Majid Mahmoodabadi ◽  
Lindsey Sebastian Bryson

Seasonal variations in hydrologic conditions greatly influence the hydro-mechanical properties of unsaturated soils. There are several models available to estimate shear strength of unsaturated soil under various hydrologic conditions. However, many of these existing models provide little to no data regarding the deformations associated with wetting and drying of unsaturated soils. The incremental hydro-mechanical behavior for an unsaturated soil is generally described by a constitutive framework. In this study, a modified-Sheng, Fredlund and Gens (SFG) soil constitutive model was utilized with in-situ hydrologic data to simulate fully coupled mechanical behavior for an unsaturated slope over different hydrologic events. This paper also presents a hydrological prediction approach to estimate hydrologic characteristics of unsaturated soils over several wetting and drying events using only the soil-water characteristics parameters of the main drying curve. The proposed approach provides a possibility of describing long-term hydrologic behavior of unsaturated soils by means of limited amount of in-situ hydrologic data. The outcome of this study provides geotechnical engineers with a capability of estimating deformational behavior of unsaturated soils under various real-time rainfall/evapotranspiration conditions and implementing more effective emergency planning.


2009 ◽  
Vol 13 (9) ◽  
pp. 1671-1683 ◽  
Author(s):  
A. Peters ◽  
W. Durner

Abstract. Water collection from undisturbed unsaturated soils to estimate in situ water and solute fluxes in the field is a challenge, in particular if soils are heterogeneous. Large sampling devices are required if preferential flow paths are present. We present a modular plate system that allows installation of large zero-tension lysimeter plates under undisturbed soils in the field. To investigate the influence of the lysimeter on the water flow field in the soil, a numerical 2-D simulation study was conducted for homogeneous soils with uni- and bimodal pore-size distributions and stochastic Miller-Miller heterogeneity. The collection efficiency was found to be highly dependent on the hydraulic functions, infiltration rate, and lysimeter size, and was furthermore affected by the degree of heterogeneity. In homogeneous soils with high saturated conductivities the devices perform poorly and even large lysimeters (width 250 cm) can be bypassed by the soil water. Heterogeneities of soil hydraulic properties result into a network of flow channels that enhance the sampling efficiency of the lysimeter plates. Solute breakthrough into zero-tension lysimeter occurs slightly retarded as compared to the free soil, but concentrations in the collected water are similar to the mean flux concentration in the undisturbed soil. To validate the results from the numerical study, a dual tracer study with seven lysimeters of 1.25×1.25 m area was conducted in the field. Three lysimeters were installed underneath a 1.2 m filling of contaminated silty sand, the others deeper in the undisturbed soil. The lysimeters directly underneath the filled soil material collected water with a collection efficiency of 45%. The deeper lysimeters did not collect any water. The arrival of the tracers showed that almost all collected water came from preferential flow paths.


Sign in / Sign up

Export Citation Format

Share Document