scholarly journals Optimization of production and transport infrastructure based on cluster analysis methods

2020 ◽  
Vol 164 ◽  
pp. 03008
Author(s):  
Oleg Moskvichev ◽  
Sergei Nikishchenkov ◽  
Elena Moskvicheva

In order to solve the problems of optimizing production and transportation systems, a clustering procedure for objects is suggested. The procedure is a universal methodology for dividing a set of objects into subsets with their centers possessing optimal properties. At the same time, the use of point proximity metrics used in cluster analysis models the minimization of distances during transportation. If the volume of produced/extracted containerisable products of a production point is considered as the “weight” of each point, than the problem of minimizing transportation costs can be solved as a problem of optimizing clusters and their centers. A set of analytical models has been developed to describe and optimize the choice of location and number of container terminals (CT) at the first level and container storage and distribution centers (СSDC) at the second level of a two-level terminal model and logistics infrastructure of the container transport system (CTS). New clustering algorithms are suggested to determine the locations of CT and СSDC based on the condition of minimizing transportation costs and creating a terminal and logistics infrastructure, taking into account given or random number of clusters.

1996 ◽  
Vol 8 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ken Bartley

This paper discusses the need for nationally based analytical models of the medieval period. The use of cluster analysis as a method for classifying demesne farms, by the crops they grew and their livestock management, is explained. Successful implementation of cluster analysis requires both the existence of a large base sample, to permit isolation of specific groupings within the data, and access to considerable processing time. The paper concludes by demonstrating how discriminant analysis can provide an efficient and systematic way of classifying even a single manor within a national frame of reference.


2015 ◽  
pp. 125-138 ◽  
Author(s):  
I. V. Goncharenko

In this article we proposed a new method of non-hierarchical cluster analysis using k-nearest-neighbor graph and discussed it with respect to vegetation classification. The method of k-nearest neighbor (k-NN) classification was originally developed in 1951 (Fix, Hodges, 1951). Later a term “k-NN graph” and a few algorithms of k-NN clustering appeared (Cover, Hart, 1967; Brito et al., 1997). In biology k-NN is used in analysis of protein structures and genome sequences. Most of k-NN clustering algorithms build «excessive» graph firstly, so called hypergraph, and then truncate it to subgraphs, just partitioning and coarsening hypergraph. We developed other strategy, the “upward” clustering in forming (assembling consequentially) one cluster after the other. Until today graph-based cluster analysis has not been considered concerning classification of vegetation datasets.


2021 ◽  
Vol 6 (3) ◽  
pp. 43
Author(s):  
Konstantinos Gkoumas ◽  
Kyriaki Gkoktsi ◽  
Flavio Bono ◽  
Maria Cristina Galassi ◽  
Daniel Tirelli

Europe’s aging transportation infrastructure requires optimized maintenance programs. However, data and monitoring systems may not be readily available to support strategic decisions or they may require costly installations in terms of time and labor requirements. In recent years, the possibility of monitoring bridges by indirectly sensing relevant parameters from traveling vehicles has emerged—an approach that would allow for the elimination of the costly installation of sensors and monitoring campaigns. The advantages of cooperative, connected, and automated mobility (CCAM), which is expected to become a reality in Europe towards the end of this decade, should therefore be considered for the future development of iSHM strategies. A critical review of methods and strategies for CCAM, including Intelligent Transportation Systems, is a prerequisite for moving towards the goal of identifying the synergies between CCAM and civil infrastructures, in line with future developments in vehicle automation. This study presents the policy framework of CCAM in Europe and discusses the policy enablers and bottlenecks of using CCAM in the drive-by monitoring of transport infrastructure. It also highlights the current direction of research within the iSHM paradigm towards the identification of technologies and methods that could benefit from the use of connected and automated vehicles (CAVs).


2021 ◽  
Vol 9 (4) ◽  
pp. 378-398
Author(s):  
Chunhua Chen ◽  
Haohua Liu ◽  
Lijun Tang ◽  
Jianwei Ren

Abstract DEA (data envelopment analysis) models can be divided into two groups: Radial DEA and non-radial DEA, and the latter has higher discriminatory power than the former. The range adjusted measure (RAM) is an effective and widely used non-radial DEA approach. However, to the best of our knowledge, there is no literature on the integer-valued super-efficiency RAM-DEA model, especially when undesirable outputs are included. We first propose an integer-valued RAM-DEA model with undesirable outputs and then extend this model to an integer-valued super-efficiency RAM-DEA model with undesirable outputs. Compared with other DEA models, the two novel models have many advantages: 1) They are non-oriented and non-radial DEA models, which enable decision makers to simultaneously and non-proportionally improve inputs and outputs; 2) They can handle integer-valued variables and undesirable outputs, so the results obtained are more reliable; 3) The results can be easily obtained as it is based on linear programming; 4) The integer-valued super-efficiency RAM-DEA model with undesirable outputs can be used to accurately rank efficient DMUs. The proposed models are applied to evaluate the efficiency of China’s regional transportation systems (RTSs) considering the number of transport accidents (an undesirable output). The results help decision makers improve the performance of inefficient RTSs and analyze the strengths of efficient RTSs.


Author(s):  
Junjie Wu ◽  
Jian Chen ◽  
Hui Xiong

Cluster analysis (Jain & Dubes, 1988) provides insight into the data by dividing the objects into groups (clusters), such that objects in a cluster are more similar to each other than objects in other clusters. Cluster analysis has long played an important role in a wide variety of fields, such as psychology, bioinformatics, pattern recognition, information retrieval, machine learning, and data mining. Many clustering algorithms, such as K-means and Unweighted Pair Group Method with Arithmetic Mean (UPGMA), have been wellestablished. A recent research focus on clustering analysis is to understand the strength and weakness of various clustering algorithms with respect to data factors. Indeed, people have identified some data characteristics that may strongly affect clustering analysis including high dimensionality and sparseness, the large size, noise, types of attributes and data sets, and scales of attributes (Tan, Steinbach, & Kumar, 2005). However, further investigation is expected to reveal whether and how the data distributions can have the impact on the performance of clustering algorithms. Along this line, we study clustering algorithms by answering three questions: 1. What are the systematic differences between the distributions of the resultant clusters by different clustering algorithms? 2. How can the distribution of the “true” cluster sizes make impact on the performances of clustering algorithms? 3. How to choose an appropriate clustering algorithm in practice? The answers to these questions can guide us for the better understanding and the use of clustering methods. This is noteworthy, since 1) in theory, people seldom realized that there are strong relationships between the clustering algorithms and the cluster size distributions, and 2) in practice, how to choose an appropriate clustering algorithm is still a challenging task, especially after an algorithm boom in data mining area. This chapter thus tries to fill this void initially. To this end, we carefully select two widely used categories of clustering algorithms, i.e., K-means and Agglomerative Hierarchical Clustering (AHC), as the representative algorithms for illustration. In the chapter, we first show that K-means tends to generate the clusters with a relatively uniform distribution on the cluster sizes. Then we demonstrate that UPGMA, one of the robust AHC methods, acts in an opposite way to K-means; that is, UPGMA tends to generate the clusters with high variation on the cluster sizes. Indeed, the experimental results indicate that the variations of the resultant cluster sizes by K-means and UPGMA, measured by the Coefficient of Variation (CV), are in the specific intervals, say [0.3, 1.0] and [1.0, 2.5] respectively. Finally, we put together K-means and UPGMA for a further comparison, and propose some rules for the better choice of the clustering schemes from the data distribution point of view.


Author(s):  
Rui Xu ◽  
Donald C. Wunsch II

To classify objects based on their features and characteristics is one of the most important and primitive activities of human beings. The task becomes even more challenging when there is no ground truth available. Cluster analysis allows new opportunities in exploring the unknown nature of data through its aim to separate a finite data set, with little or no prior information, into a finite and discrete set of “natural,” hidden data structures. Here, the authors introduce and discuss clustering algorithms that are related to machine learning and computational intelligence, particularly those based on neural networks. Neural networks are well known for their good learning capabilities, adaptation, ease of implementation, parallelization, speed, and flexibility, and they have demonstrated many successful applications in cluster analysis. The applications of cluster analysis in real world problems are also illustrated. Portions of the chapter are taken from Xu and Wunsch (2008).


Author(s):  
Abha Sharma ◽  
R. S. Thakur

Analyzing clustering of mixed data set is a complex problem. Very useful clustering algorithms like k-means, fuzzy c-means, hierarchical methods etc. developed to extract hidden groups from numeric data. In this paper, the mixed data is converted into pure numeric with a conversion method, the various algorithm of numeric data has been applied on various well known mixed datasets, to exploit the inherent structure of the mixed data. Experimental results shows how smoothly the mixed data is giving better results on universally applicable clustering algorithms for numeric data.


10.12737/7483 ◽  
2014 ◽  
Vol 8 (7) ◽  
pp. 0-0
Author(s):  
Олег Сдвижков ◽  
Oleg Sdvizhkov

Cluster analysis [3] is a relatively new branch of mathematics that studies the methods partitioning a set of objects, given a finite set of attributes into homogeneous groups (clusters). Cluster analysis is widely used in psychology, sociology, economics (market segmentation), and many other areas in which there is a problem of classification of objects according to their characteristics. Clustering methods implemented in a package STATISTICA [1] and SPSS [2], they return the partitioning into clusters, clustering and dispersion statistics dendrogram of hierarchical clustering algorithms. MS Excel Macros for main clustering methods and application examples are given in the monograph [5]. One of the central problems of cluster analysis is to define some criteria for the number of clusters, we denote this number by K, into which separated are a given set of objects. There are several dozen approaches [4] to determine the number K. In particular, according to [6], the number of clusters K - minimum number which satisfies where - the minimum value of total dispersion for partitioning into K clusters, N - number of objects. Among the clusters automatically causes the consistent application of abnormal clusters [4]. In 2010, proposed and experimentally validated was a method for obtaining the number of K by applying the density function [4]. The article offers two simple approaches to determining K, where each cluster has at least two objects. In the first number K is determined by the shortest Hamiltonian cycles in the second - through the minimum spanning tree. The examples of clustering with detailed step by step solutions and graphic illustrations are suggested. Shown is the use of macro VBA Excel, which returns the minimum spanning tree to the problems of clustering. The article contains a macro code, with commentaries to the main unit.


2012 ◽  
Vol 472-475 ◽  
pp. 484-487
Author(s):  
Xiao Peng Yao ◽  
Li Zeng

Automated guided vehicle (AGV) is a kind of wheeled mobile robot, which used for the internal and external transport of materials from one place to another in flexible manufacture system (FMS). AGV are also used for repeating transportation tasks in other areas, such as warehouses, container terminals and external (underground) transportation systems. The AGV navigation algorithms are classified as global or local, depending on surrounding environment. In global navigation, the environment surrounding the AGV is known and the path which avoids the obstacle is selected. In local navigation, the environment surrounding the AGV is unknown, and sensors are used to detect the obstacles and avoid collision. In the past, a number of algorithms have been designed by many researchers for robot navigation problems. Through analyzing the existing positioning methods and precision for AGV, this paper design and develop a new navigation software based on multi-sensor information fusion algorithm, it is proved through the theory analysis and experiment that the position precision of AGV is ≤±5mm, posture precision is ≤±0.3°. It can full meet the requirements of robot’s accuracy.


2021 ◽  
Vol 10 (47) ◽  
pp. 81-92
Author(s):  
Andrey V. Silin ◽  
Olga N. Grinyuk ◽  
Tatyana A. Lartseva ◽  
Olga V. Aleksashina ◽  
Tatiana S. Sukhova

This article discusses an approach to creating a complex of programs for the implementation of cluster analysis methods. A number of cluster analysis tools for processing the initial data set and their software implementation are analyzed, as well as the complexity of the application of cluster data analysis. An approach to data is generalized from the point of view of factual material that supplies information for the problem under study and is the basis for discussion, analysis and decision-making. Cluster analysis is a procedure that combines objects or variables into groups based on a given rule. The work provides a grouping of multivariate data using proximity measures such as sample correlation coefficient and its module, cosine of the angle between vectors and Euclidean distance. The authors proposed a method for grouping by centers, by the nearest neighbor and by selected standards. The results can be used by analysts in the process of creating a data analysis structure and will improve the efficiency of clustering algorithms. The practical significance of the results of the application of the developed algorithms is expressed in the software package created by means of the C ++ language in the VS environment.


Sign in / Sign up

Export Citation Format

Share Document