scholarly journals The Improvement and application of elevation measurement method with total station

2020 ◽  
Vol 165 ◽  
pp. 03018
Author(s):  
Yiteng Xu ◽  
Xin Zhao ◽  
Hewen Liu ◽  
Feng Xu ◽  
Xiaoqiang Wang

In this paper, by analyzing the limitations of the traditional trigonometric elevation method, and on the basis of establishing a mathematical model of trigonometric elevation, a convenient and fast trigonometric elevation method without instrument height and prism height is improved, and the operation steps of the method are introduced in detail. The accuracy analysis was evaluated and the method was applied to actual engineering. The results show that under the premise of ensuring the measurement accuracy, this method not only reduces the range of measurement error sources, but also improves the measurement efficiency.

2020 ◽  
Vol 165 ◽  
pp. 04022
Author(s):  
Zhang Hongfeng

Based on the principle of trigonometric elevation measurement and the law of error propagation, the trigonometric elevation formula is derived in this paper. The factors that cause the trigonometric measurement error are analyzed accurately. It is considered that the use of a high-precision total station for the trigonometric elevation measurement under opposite conditions can reach the second-order level measurement accuracy.


2011 ◽  
Vol 52-54 ◽  
pp. 156-161 ◽  
Author(s):  
Lei Zhao ◽  
Shu Gui Liu

A new type of coordinate measuring arm with a Revo revolving body which can realize quick measuring in spherical domain has high stability, fast measuring speed and high accuracy compared with common coordinate measuring arm. We use the method of space coordinate transformation to solve the problem that the transformation matrix can’t be got from Revo body to test head by DH method, and apply DH theory to build the mathematical model of system. The system model is verified right by sketching. The error model is built and the effect of measurement accuracy from all error sources is deeply analyzed. It presents a theory foundation for further researching on improving accuracy of this new type of coordinate measuring arm.


2019 ◽  
Vol 30 ◽  
pp. 11005
Author(s):  
Yu.B. Gimpilevich ◽  
S.E. Zebek

The study concerns the influence of a non-ideal probe on a measurement error of the complex parameters of microwave nodes in the implementation of the quadrature measurement method based on the analysis of the electromagnetic wave’s phase distribution in the transmission line. A mathematical model of the quadrature measurement method has been developed using an imperfect probe, and relations have been obtained that allow one to calculate measurement errors. A program for error modelling and calculating was developed and multiple numerical studies were performed using this program. It is shown that for practically important cases, the relative error in the measurement of the module does not exceed 0.5%, and the absolute error of the argument does not exceed 2 degrees.


2014 ◽  
Vol 644-650 ◽  
pp. 1278-1281
Author(s):  
Shi Zheng Sun ◽  
Dong Lin Peng ◽  
Fang Yan Zheng

In order to improve time-grating sensor’s measurement accuracy, which is influenced by stability of the components, temperature and mechanical processing in precision measuring procedure. A novel compensation method based on Fourier series approach and least square is presented. With this method, the measurement error is separate into a lot of harmonics, and the optimal parameters of compensation are evaluated by least square method. The accuracy analysis certificates that time-grating sensor’s measurement error is reduced from ±14.8′′ to ±2.5′′ by applying the error compensation method, which is compensated about 80% compared with no compensation. Sensor’s accuracy is effectively improved.


2016 ◽  
Vol 22 (3) ◽  
pp. 420-436 ◽  
Author(s):  
Karol Daliga ◽  
Zygmunt Kurałowicz

Interest in the influence of the incidence angle of a laser beam to distance measurements can be seen in many areas of science and technology: geodesy, glaciology, archaeology, machine automation, and others. This paper presents results of measurements of the effect of the incidence angle of a laser beam to distance measurements to the surfaces of different colour and roughness by Topcon's electro-optical total station with an accuracy of 3 mm. Measurement method and the method of elimination of test stand errors are presented. The results of measurements have been analysed and the influence of selected factors (surface colour and roughness, lack of instrument rectification) on the distance measurement have been discussed. It is also shown the critical incidence angle above which it can be impossible to measure distances to reflective foil with tested total station


Sensor Review ◽  
2020 ◽  
Vol 40 (2) ◽  
pp. 217-226
Author(s):  
Shuanggao Li ◽  
Wenmin Chu ◽  
Xiang Huang

Purpose The measurement of aircraft barycenter is a verification of theoretical barycenter and is an important step of aircraft development. In the traditional measurement method of aircraft barycenter, the posture of the aircraft needs to be adjusted manually and is measured by optical instruments. The efficiency of posture adjustment depends on the proficiency of workers, and the accuracy of measurement is not high. In view of these problems of the current barycenter measurement method, this paper aims to propose an aircraft barycenter measurement method based on multi-posture. Design/methodology/approach In this method, the numerical control locator is used as a supporting part to fix and adjust the aircraft, and the calculation model of aircraft barycenter is established according to the principle of rigid body rotation and the principle of moment balance. Then, the influence of the main error sources on the measurement accuracy of aircraft barycenter is analyzed by Monte Carlo simulation, and the measurement accuracy is compared with that of the barycenter measurement method based on horizontal posture. Finally, the experiment platform of barycenter measurement was built in the laboratory and the experiments were carried out. Findings The experimental results show that the barycenter measurement method proposed in this paper has obvious advantages in measurement accuracy and efficiency compared with the traditional method. Originality/value This method can be used to measure the barycenter of different types of aircraft quickly and automatically.


2014 ◽  
Vol 596 ◽  
pp. 468-471
Author(s):  
Tao Hou ◽  
Duo Wang Fan ◽  
Hong Xia Niu

For the problem of a big velocity measurement error,analyzed the velocity measurement error and studied the method of improving velocity measurement accuracy for the velocity measuring system of high-speed train.In this analysis and method, the speed error analysis was carried out based on understand the characteristics of the high-speed train speed sensor, and found that there is a bigger error. Then discussed the influence of large errors of the control system, and then put forward the improved M/T speed measurement method to solve the error problem. Finally, calculated velocity-measuring error for the improved M/T speed measurement method. The results show that the accuracy of speed has improved greatly. The research method can improve the accuracy to meet the requiring of train safety and smooth run.


2014 ◽  
Vol 536-537 ◽  
pp. 13-17
Author(s):  
Hong Long Cao ◽  
Fen Ju Qin ◽  
Xue Guan Liu ◽  
He Ming Zhao

In this paper, we designed an automatic system and automatic test software, and they can carry out Kunming rats bioelectromagnetic measurement in standard status and anesthesia automatically in anechoic chamber where the electromagnetic field outside is shielded, the reflection wave is absorbed, and the measurement accuracy will be improved. We get a great number of measurement data with frequency-sweep measurement method. The mean and standard deviation of amplitudes vs. frequencies is calculated and analyzed. The results show the measurement method is feasible. We have plotted the means of measured data as multiple sets of Y values in a series of bars with standard deviations bars included and distributed in the frequency axis of X. It is found that the fluctuation of the mean and standard deviation in some frequencies is not evident which may explain frequency window effects, while in other frequencies, such a fluctuation can be obviously observed, which may suggest that bioelectromagnetic signal is influenced by biological activities (standard and anaesthesia status) in these frequency points.


2021 ◽  
pp. 33-39
Author(s):  
Makar S. Stepanov ◽  
rina G. Koshlyakova

The accelerated heat treatment during steel products hardening technology has been investigated. The possibility of measuring the temperature of steel products by thermoelectric platinum-platinum-rhodium thermocouple under microarc heating conditions is analyzed. During the experiments, working junctions of two S-type thermocouples: working and standard, were coined into the sample surface at the same level. The free thermocouples ends were connected to a digital multimeter and a personal computer. It was determined that 5 factors affect the measurement results: the electric current strength in the circuit, carbon powder, calibration, number of repeated measurement cycles, and a thermocouple copy. When planning the experiment, the concept of conducting a step-by-step nested experiment was used. Variance analysis method was used to process the experimental results. The measurement method precision parameters were calculated: repeatability and reproducibility. A linear mathematical model linking the measurement method reproducibility index with the measured temperature value has been obtained. A linear mathematical model is obtained that relates the reproducibility index of the measurement method to the measured temperature value. A measuring system for the experimental determination of the temperature of a steel sample is proposed and its application is justified for different electric current densities on the sample surface and varying duration of microarc heating. The possibilities of selecting and controlling the microarc heating modes depending on the required temperature of the heat treatment of the steel product are determined.


Author(s):  
Fenghui Lian ◽  
Qingchang Tan ◽  
Siyuan Liu

A method for measuring block thicknesses is proposed by the machine vision measurement. Equations of the measuring base plane and the light plane are formed by calibration. Then, the equation of the light strip image, that is, the image of the intersection between the base plane and light one, is established by the projection relation. Equation of the image of the light strip on the measured plane can be determined by the fitting. Since the light strip on the measuring base plane is parallel to one on the measured plane, the thickness of the measuring block is measured by using the two equations. The experiment evaluates the measurement accuracy of the measurement method and analyzes the influence of some factors on the measurement results.


Sign in / Sign up

Export Citation Format

Share Document