scholarly journals Internal particulate matter pollution in educational building

2020 ◽  
Vol 172 ◽  
pp. 06008
Author(s):  
K. Nowak-Dzieszko ◽  
T. Kisilewicz

The authors undertook research on the proper strategy of operation of educational building with gravitational ventilation in historic city center with high concentration of particulate matter PM10 and PM 2.5. In this facility the momentary increase in carbon dioxide concentration is often very high, and at the same time health requirements regarding atmospheric aerosol should be absolutely met. That is why long-term measurements of PM concentration outside and inside, as well as carbon dioxide concentration inside were carried out. CO2 was used also as a tracer gas for measurement of air change intensity. The article presents the first results of these tests and a correlation that occurs between the external and internal concentration of particulate matter PM 10 and PM 2.5. Due to a significant filtration effect of the external building envelope and particle deposition a potential conflict between required gravitational ventilation intensity and internal air pollution with particulate matters was partially reduced.

2017 ◽  
Vol 39 (02) ◽  
pp. 133-140 ◽  
Author(s):  
Adriano Silva-Renno ◽  
Guilherme Baldivia ◽  
Manoel Oliveira-Junior ◽  
Maysa Brandao-Rangel ◽  
Elias El-Mafarjeh ◽  
...  

AbstractAir pollution is a growing problem worldwide, inducing and exacerbating several diseases. Among the several components of air pollutants, particulate matter (PM), especially thick (10–2.5 µm; PM 10) and thin (≤2.5 µm; PM 2.5), are breathable particles that easily can be deposited within the lungs, resulting in pulmonary and systemic inflammation. Although physical activity is strongly recommended, its effects when practiced in polluted environments are questionable. Therefore, the present study evaluated the pulmonary and systemic response of concomitant treadmill training with PM 2.5 and PM 10 exposure. Treadmill training inhibited PM 2.5- and PM 10-induced accumulation of total leukocytes (p<0.001), neutrophils (p<0.001), macrophages (p<0.001) and lymphocytes (p<0.001) in bronchoalveolar lavage (BAL), as well as the BAL levels of IL-1beta (p<0.001), CXCL1/KC (p<0.001) and TNF-alpha (p<0.001), whereas it increased IL-10 levels (p<0.05). Similar effects were observed on accumulation of polymorphonuclear (p<0.01) and mononuclear (p<0.01) cells in the lung parenchyma and in the peribronchial space. Treadmill training also inhibited PM 2.5- and PM 10-induced systemic inflammation, as observed in the number of total leukocytes (p<0.001) and in the plasma levels of IL-1beta (p<0.001), CXCL1/KC (p<0.001) and TNF-alpha (p<0.001), whereas it increased IL-10 levels (p<0.001). Treadmill training inhibits lung and systemic inflammation induced by particulate matter.


Author(s):  
Raja Singh ◽  
Tushar Mondal ◽  
Anil Dewan

A study was conducted to see the effect of an opened window vs. a closed window in New Delhi in peak winters. This is the time when the PM 2.5 and PM 10 concentrations are the highest in the ambient air due to various external factors. A PM 2.5 and PM 10 air quality meter was used at a singular location near the window for 10 days with 9 readings taken during the daily working hours. Contrary to the possible conjectural belief, it was found that the window opened or closed did not have a substantial effect on the concentrations of the indoor levels of PM 2.5 and PM 10. The results showed that opening of the windows does not substantially affect the levels of the indoors with respect to the levels of PM 2.5 and PM 10 in the outdoors. Outdoors may provide the source of the particulate matter in the indoor, but due to diffusive effect, open windows play a key role in the reducing the indoor levels. This study was reconfirmed with options where the windows were opened and then closed and vice-versa. In all cases, the effect of the outdoor was not visible. To curb indoor particulate matter levels, isolation is not the solution. (200 words)


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6230
Author(s):  
Dominik Bekierski ◽  
Krystyna Barbara Kostyrko

Epidemiological research has shown that there is a positive correlation between the incidence of disease and mortality in humans and the mass concentration of particulate matter. An average 1 g of suspended dust emitted in a room results in the same exposure as 1 kg emitted to the outside air. In this study, the authors described the state of knowledge on dust pollution inside and outside buildings (I/O ratios), and methods of testing the PM infiltration process parameters. According to the law of indoor–outdoor particle mass balance and the physical basis of aerosol penetration theory, a relatively simple but new method for estimating the penetration factor P was tested. On the basis of the curve of dynamic changes of internal dust concentration in the process of particle concentration decay and next of the followed curve of dynamic rebound of particle concentration, authors measured penetration factor of ambient PM2.5 through building envelope. Authors modification of the method is to be used for determining the value of the particle deposition rate k not from the course of the characteristics in the transient state (the so-called particle concentration decay curves) but from the concentration rebound course, stimulated by natural particle infiltration process. Recognition measurements of the mass concentration of suspended PM2.5 and PM10 particles inside the rooms were carried out. In this study, the choice of the prediction particle penetration factor P calculation method was supported by the exemplary calculation of the p value for a room polluted by PM2.5. The preliminary results of the penetration factors determined by this method P = 0.61 are consistent with the P factor values from the literature obtained so far for this dimensional group of dusts.


Author(s):  
Myeongseong Lee ◽  
Jacek A. Koziel ◽  
Núbia Macedo ◽  
Peiyang Li ◽  
Baitong Chen ◽  
...  

This study evaluated the use of filtration and UV-A photocatalysis for the reduction of particulate matter (PM) and airborne bacterial pathogens in swine barns. Two MERV filters (8 and 15) were used to mitigate PM concentrations measured at the PM 1, PM 2.5, respirable PM, and PM 10 ranges. Filtration was also used to generate different levels of airborne pathogens to be treated by UV-A. Results show that MERV 8 and 15 filters effectively reduced PM concentrations (96-98%) in air exhausted from a swine barn (p ranged from &lt; 0.01 to 0.04). UV-A photocatalysis did not mitigate PM concentrations. UV-A photocatalysis treatment reduced measured colony-forming units (CFUs) by 15-95%. The CFU percent reduction was higher when airborne PM concentration was low. The numeric results suggested a real mitigation effect despite p-values that did not meet the usual statistical cut-off of &lt;0.05 for significance due to the large variability of the CFU control samples. Normalization of measured airborne pathogen concentrations by smaller PM size range concentrations led to emerging significant treatment differences for CFUs. A significant decrease (~60% reduction; p &lt; 0.03) in the concentration of viable airborne bacteria was shown for all PM below the 10-micron range.


1970 ◽  
Vol 46 (3) ◽  
pp. 389-398 ◽  
Author(s):  
MA Rouf ◽  
M Nasiruddin ◽  
AMS Hossain ◽  
MS Islam

Dhaka City has been affecting with severe air pollution particularly by particulate matter. The ambient air quality data for particulate matter were collected during April 2002 to September 2005 at the Continuous Air Quality Monitoring Station (CAMS) located at Sangshad Bhaban, Dhaka. Data reveal that the pollution from particulate matter greatly varies with climatic condition. While the level comes down the limit value in the monsoon period (April-October), it goes beyond the limit during non-monsoon time (November-March). The latest data show that during monsoon period PM 10 concentration varies from 50 μg/m3 to 80 μg/m3 and PM 2.5 concentration from 20 μg/m3 to 60 μg/m3 and during non monsoon period PM 10 varies from 100 μg/m3 to 250 μg/m3 and PM 2.5 varies from 70 μg/m3 to 165 μg/m3. The seasonal variation clearly indicates the severe PM 10 pollution during the dry winter season and also sometime during post-monsoon season in Dhaka City. Keywords: Air pollution; PM 2.5; PM 10; Air quality DOI: http://dx.doi.org/10.3329/bjsir.v46i3.9049 BJSIR 2011; 46(3): 389-398


Author(s):  
Usanee Vinitketkumnuen ◽  
Kittiwan Kalayanamitra ◽  
Teera Chewonarin ◽  
Richard Kamens
Keyword(s):  
Pm 2.5 ◽  

2020 ◽  
Author(s):  
Daniel Kiser ◽  
William J. Metcalf ◽  
Gai Elhanan ◽  
Brendan Schnieder ◽  
Karen Schlauch ◽  
...  

Abstract Background: Health risks due to particulate matter (PM) from wildfires may differ from risk due to PM from other sources. In places frequently subjected to wildfire smoke, such as Reno, Nevada, it is critical to determine whether wildfire PM poses unique risks. Our goal was to quantify the difference in the association of adverse asthma events with PM on days when wildfire smoke was present versus days when wildfire smoke was not present. Methods: We obtained counts of visits for asthma at emergency departments and urgent care centers from a large regional healthcare system in Reno for the years 2013-2018. We also obtained dates when wildfire smoke was present from the Washoe County Health District Air Quality Management Division. We then examined whether the presence of wildfire smoke modified the association of PM 2.5 , PM 10-2.5 , and PM 10 with asthma visits using generalized additive models. We improved on previous studies by accounting for possible non-linearity in the association between PM concentration and asthma visits: wildfire-smoke days where the PM concentration exceeded the maximum PM concentration on other days were excluded. Results: Air quality was affected by wildfire smoke on 188 days between 2013 and 2018. We found that the presence of wildfire smoke increased the association of a 5 µg/m 3 increase in daily and three-day averages of PM 2.5 with asthma visits by 6.1% (95% confidence interval (CI): 2.1-10.3%) and 6.8% (CI: 1.2-12.7%), respectively. Similarly, the presence of wildfire smoke increased the association of a 5 µg/m 3 increase in daily and three-day averages of PM 10 with asthma visits by 5.5% (CI: 2.5-8.6%) and 7.2% (CI: 2.6-12.0%), respectively. We did not observe any significant increases in association for PM 10-2.5 or for seven-day averages of PM 2.5­ and PM 10 . Conclusions: Since we found significantly stronger associations of PM 2.5 and PM 10 with asthma visits when wildfire smoke was present, our results suggest that wildfire PM is more hazardous than non-wildfire PM for patients with asthma.


2013 ◽  
Vol 864-867 ◽  
pp. 1578-1581
Author(s):  
Woo Sung Jung ◽  
Young Min Cho ◽  
Duck Shin Park ◽  
Hyun Seung Jung

Carbon dioxide concentration of indoor spaces can be very high if there is not proper ventilation. High concentration of carbon dioxide is known to cause headache, sleepiness, languor, and lower concentration. Though ventilation is one of the easiest ways to control carbon dioxide concentration, it is not applicable when the outdoor air is polluted by various pollutants. In this study, carbon dioxide adsorbent using potassium carbonate was prepared, and its adsorption performance was extensively investigated. The repetitive use performance of this adsorbent was also studied by repeating adsorption-desorption cycle.


Sign in / Sign up

Export Citation Format

Share Document