scholarly journals Approaches to probiotics properties testing using Caco-2 cells

2020 ◽  
Vol 175 ◽  
pp. 03024
Author(s):  
Viktor Chmykhalo ◽  
Peter Zolotukhin ◽  
Viktor Pakhomov ◽  
Aleksey Prutskov ◽  
Sabina Khairullina ◽  
...  

Adequate biological models are a prerequisite to screening and development of probiotic drugs. In the present study, Caco-2 cell line is reviewed as a model for analyzing properties of probiotics. This cell culture possesses all the characteristics necessary for evaluating the effects of probiotic drugs on a wide range of both intracellular processes and intercellular interactions. Informativeness of Caco-2 cells is in the focus of the present review.

Author(s):  
V.K. Chmyhalo ◽  
◽  
P.V. Zolotukhin ◽  
D.V. Rudoy ◽  
A.M. Ermakov ◽  
...  

The use of adequate biological test systems in the development of probiotic drugs is one of the main stages in the study and screening of potential candidates. In this work, a Caco-2 cell culture is considered as a model for analyzing the properties of probiotics. This cell culture has all the necessary characteristics to evaluate the effect of probiotic drugs on a wide range of both intracellular processes and intercellular interactions, a list of which is demonstrated in this paper.


Author(s):  
D.W.R. White

Cell culture and genetic engineering techniques can be used to develop improved pasture plants. To utilise these methods we have developed procedures for regenerating plants from tissue cultures of perennial ryegrass and white clover. In both, the plant genotype influences regeneration capacity. There was significant genetic variation among regenerated perennial ryegrass plants in a wide range of characteristics. Most of the regenerants were resIstant to crown rust and this trait was highly heritable. This rust resistance is being used to breed a new ryegrass cultivar. A system for introducing cloned genes into white clover is described. This capability is bemg used to incorporate genes with the potential to improve nutritional quality and pest resistance. Other possibilities for engineering genetic improvements in white clover, genes conferring herbicide tolerance and resistance to white clover mosaic virus, are briefly outlined. Keywords: Lolium perenne, Trifolium repens, cell culture, somaclonal variation, crown rust resistance, transformation, cloned genes, nutritional quality, proteinase inhibitors, Bt toxins, pest resistance, WCMV viral cross-protection, herbicide tolerance, Agrobacterium, Bacillus thuringenisis.


2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (β-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


2020 ◽  
Vol 20 (14) ◽  
pp. 1310-1323
Author(s):  
Andrea Bosso ◽  
Antimo Di Maro ◽  
Valeria Cafaro ◽  
Alberto Di Donato ◽  
Eugenio Notomista ◽  
...  

Host defence peptides (HDPs) are powerful modulators of cellular responses to various types of insults caused by pathogen agents. To date, a wide range of HDPs, from species of different kingdoms including bacteria, plant and animal with extreme diversity in structure and biological activity, have been described. Apart from a limited number of peptides ribosomally synthesized, a large number of promising and multifunctional HDPs have been identified within protein precursors, with properties not necessarily related to innate immunity, consolidating the fascinating hypothesis that proteins have a second or even multiple biological mission in the form of one or more bio-active peptides. Among these precursors, enzymes constitute certainly an interesting group, because most of them are mainly globular and characterized by a fine specific internal structure closely related to their catalytic properties and also because they are yet little considered as potential HDP releasing proteins. In this regard, the main aim of the present review is to describe a panel of HDPs, identified in all canonical classes of enzymes, and to provide a detailed description on hydrolases and their corresponding HDPs, as there seems to exist a striking link between these structurally sophisticated catalysts and their high content in cationic and amphipathic cryptic peptides.


2020 ◽  
Vol 16 (4) ◽  
pp. 419-431
Author(s):  
Kishore K. Valluri ◽  
Tejeswara R. Allaka ◽  
IV Kasi Viswanath ◽  
Nagaraju PVVS

Background: Many pyrazole piperazine derivatives are known to exhibit a wide range, thus being attractive for the drug design and synthesis of interesting class of widely studied heterocyclic compounds. It is therefore necessary to devote continuing effort for the identification and development of New Chemical Entities (NCEs) as potential antibacterial and anticancer agents to address serious health problems. Methods: A series of new compounds containing pyrazole ring linked to a piperazine hydrochloride moiety were synthesized and screened for their antibacterial activity, cytotoxicity of novel scaffolds are described by variation in therapeutic effects of parent molecule. The structure variants were characterized by using a blend of spectroscopic 1H NMR, 13C NMR, IR, Mass and chromatographic techniques. Results: When tested for in vitro antibacterial and anticancer activities, several of these compounds showed good activities. The target compounds 9b, 9a and 9e exhibited a high degree of anticancer activity against human colon cancer cell line Caco-2 and human breast cancer cell line MDAMB231. Further, 9a, 9b, 9d, and 9h showed better activity towards four medically relevant organisms; Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Klebsiella Species compared to CPF. In the present investigation, cheminfomatics tools Molinspiration, 2003 and MolSoft, 2007 for the prediction of insilico molecular properties and drug likeness for the target compounds 9a-h was evaluated and positive results were observed. Conclusion: Our study revealed that the molecular framework presented here could be a useful template for the identification of novel small molecules as promising antibacterial/ anticancer agents.


Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Donghoon Kang ◽  
Natalia V. Kirienko

Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that utilizes a wide-range of virulence factors to cause acute, life-threatening infections in immunocompromised patients, especially those in intensive care units. It also causes debilitating chronic infections that shorten lives and worsen the quality of life for cystic fibrosis patients. One of the key virulence factors in P. aeruginosa is the siderophore pyoverdine, which provides the pathogen with iron during infection, regulates the production of secreted toxins, and disrupts host iron and mitochondrial homeostasis. These roles have been characterized in model organisms such as Caenorhabditis elegans and mice. However, an intermediary system, using cell culture to investigate the activity of this siderophore has been absent. In this report, we describe such a system, using murine macrophages treated with pyoverdine. We demonstrate that pyoverdine-rich filtrates from P. aeruginosa exhibit substantial cytotoxicity, and that the inhibition of pyoverdine production (genetic or chemical) is sufficient to mitigate virulence. Furthermore, consistent with previous observations made in C. elegans, pyoverdine translocates into cells and disrupts host mitochondrial homeostasis. Most importantly, we observe a strong correlation between pyoverdine production and virulence in P. aeruginosa clinical isolates, confirming pyoverdine’s value as a promising target for therapeutic intervention. This in vitro cell culture model will allow rapid validation of pyoverdine antivirulents in a simple but physiologically relevant manner.


Author(s):  
Mustafa Şükrü Kurt ◽  
Mehmet Enes Arslan ◽  
Ayşenur Yazici ◽  
İlkan Mudu ◽  
Elif Arslan

AbstractIn this study, borosilicate glass and 316 L stainless steel were coated with germanium (Ge) and tungsten (W) metals using the Magnetron Sputtering System. Surface structural, mechanical, and tribological properties of uncoated and coated samples were examined using SEM, X-ray diffraction (XRD), energy-dispersive spectroscopy, and tribometer. The XRD results showed that WGe2 chemical compound observed in (110) crystalline phase and exhibited a dense structure. According to the tribological analyses, the adhesion strength of the coated deposition on 316 L was obtained 32.8 N, and the mean coefficient of friction was around 0.3. Biocompatibility studies of coated metallic biomaterials were analyzed on fibroblast cell culture (Primary Dermal Fibroblast; Normal, Human, Adult (HDFa)) in vitro. Hoescht 33258 fluorescent staining was performed to investigate the cellular density and chromosomal abnormalities of the HDFa cell line on the borosilicate glasses coated with germanium–tungsten (W–Ge). Cell viabilities of HDFa cell line on each surface (W–Ge coated borosilicate glass, uncoated borosilicate glass, and cell culture plate surface) were analyzed by using (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cytotoxicity assay. The antibiofilm activity of W–Ge coated borosilicate glass showed a significant reduction effect on Staphylococcus aureus (ATCC 25923) and Pseudomonas aeruginosa (ATCC 27853) adherence compared to control groups. In the light of findings, tungsten and germanium, which are some of the most common industrial materials, were investigated as biocompatible and antimicrobial surface coatings and recommended as bio-implant materials for the first time.


In Vitro ◽  
1973 ◽  
Vol 8 (5) ◽  
pp. 375-378 ◽  
Author(s):  
Arthur H. Intosh ◽  
K. Maramorosch ◽  
C. Rechtoris

In Vitro ◽  
1977 ◽  
Vol 13 (6) ◽  
pp. 389-397 ◽  
Author(s):  
J. H. Wharton ◽  
R. D. Ellender ◽  
B. L. Middlebrooks ◽  
P. K. Stocks ◽  
Adrian R. Lawler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document