scholarly journals Performance of HSDI diesel-engine generator using the blend of B5, n-butanol and ethanol as increased to 20%

2020 ◽  
Vol 182 ◽  
pp. 02001
Author(s):  
Ekkachai Sutheerasak ◽  
Worachest Pirompugd ◽  
Wirogana Ruengphrathuengsuka

B5, diesel mixed with 5% biodiesel, is currently being developed to replace diesel, but there was lower engine performance. To improve the B5 properties, the addition of oxygenated additive is a better method. This research aims to study the performance of a high-speed direct injection (HSDI) diesel-engine generator at speed 3,000 rpm and different loads by using B5 blended to n-butanol and ethanol as increased to 20%. Results show that the use of B5-butanol-ethanol blends decreased engine performance as increasing ethanol; however, the release of nitric oxide, carbon monoxide, and black smoke was remarkably reduced as compared with B5. However, the use of B5 blended to 5% n-butanol, and 5% ethanol increased the electrical power to 0.33%, while electrical efficiency was added to 1.13%, and SFC was similar to B5. Therefore, this ratio can be applied with the diesel engines in the future.

2002 ◽  
Vol 3 (2) ◽  
pp. 69-79 ◽  
Author(s):  
M-S Lyu ◽  
B-S Shin

As Co2 emissions from vehicles are gaining global attention, the low fuel consuming powertrain is in much greater demand than before. Some alternatives are suggested but the high-speed direct injection (HSDI) diesel engine would be the most realistic solution. Vehicle simulation shows that a car with low fuel consumption can be realized by applying a 1–1.2 L high-speed direct injection diesel engine in vehicles weighing about 750 kg. Although the direct injection diesel engine has been researched for a long time, enhancement of mixing between air and fuel in a limited space makes it a challenging area to develop a small swept volume HSDI diesel engine. The authors are investigating small HSDI diesel engine combustion technologies in an effort to realize a low fuel consumption vehicle. The main objective in this study is to obtain a better understanding of the combustion-related parameters from such a small size HSDI diesel engine in order to improve engine performance.


2021 ◽  
Vol 11 (2) ◽  
pp. 25-36
Author(s):  
Mattana Santasnachok ◽  
Ekkachai Sutheerasak ◽  
Charoen Chinwanitcharoen ◽  
Wirogana Ruengphrathuengsuka ◽  
Sathaporn Chuepeng

Particulate matters especially particles with less than 2.5 micrometers (PM2.5) are the main cause of severe air pollution problem in Thailand that lead to the mortality risk in cardiovascular disease. Exhaust gas emissions specifically carbon monoxide and black smoke from diesel engines are the essential sources in generating significant amounts of PM2.5. Improving diesel properties by mixing oxygenated additives is one of the alternatives in reducing this pollutant. The main objective of this research is to investigate the performance and emission of a high-speed diesel engine at 3,000 rpm and different loads operated with diesel mixed with 5 to 20% ethanol and 5% ethyl acetate. The results of engine test at 80% load using diesel mixed with 5% of ethanol and ethyl acetate showed a few decreases in fuel properties and engine performance compared with diesel. The release of black smoke was also decreased to 14%. Increasing the mixture of ethanol to more than 5% has led to the decrease in engine performance continuously. The diesel mixed with ethanol at 20% and ethyl acetate at 5% has reduced the carbon monoxide and black smoke to 0.012%vol and 31.53% respectively and accrued the carbon dioxide at 1.25%vol. This is because the diesel mixed with ethanol and ethyl acetate increased the oxygen level to perform complete combustion as compared with diesel. However, the temperature of these exhaust gases was raised to 55oC


Author(s):  
Raouf Mobasheri ◽  
Zhijun Peng

High-Speed Direct Injection (HSDI) diesel engines are increasingly used in automotive applications due to superior fuel economy. An advanced CFD simulation has been carried out to analyze the effect of injection timing on combustion process and emission characteristics in a four valves 2.0L Ford diesel engine. The calculation was performed from intake valve closing (IVC) to exhaust valve opening (EVO) at constant speed of 1600 rpm. Since the work was concentrated on the spray injection, mixture formation and combustion process, only a 60° sector mesh was employed for the calculations. For combustion modeling, an improved version of the Coherent Flame Model (ECFM-3Z) has been applied accompanied with advanced models for emission modeling. The results of simulation were compared against experimental data. Good agreement of calculated and measured in-cylinder pressure trace and pollutant formation trends were observed for all investigated operating points. In addition, the results showed that the current CFD model can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.


Author(s):  
I P Gilbert ◽  
A R Heath ◽  
I D Johnstone

The need to increase power, to improve fuel economy and to meet stringent exhaust emissions legislation with a high level of refinement has provided a challenge for the design of a compact high-speed direct injection (HSDI) diesel engine. This paper describes various aspects of cylinder head design with particular consideration of layout and number of valves, valve actuation, port selection strategy, fuel injection systems and cylinder head construction.


Author(s):  
J A Stephenson ◽  
B A Hood

The paper describes the development of a high-speed direct injection (HSDI) diesel engine suitable for passenger car applications. The evolution from a low emissions medium-speed engine, through a four-cylinder 2.3 litre research engine, into a four-cylinder 2.0 litre production engine is presented. The challenge to the engineer has been to develop the HSDI engine to operate with acceptable noise, emissions, smoke and driveability over the wide speed range (up to 5000 r/min) required for passenger cars. The key element in this task was the optimization of the combustion system and fuel injection equipment. The HSDI is shown to have a significant fuel economy advantage over the prechamber indirect injection (IDI) engine. Future developments of the fuel injection system are described which will further enhance the HSDI engine and provide additional noise and emissions control.


Transport ◽  
2010 ◽  
Vol 25 (2) ◽  
pp. 116-128 ◽  
Author(s):  
Gvidonas Labeckas ◽  
Stasys Slavinskas

The article deals with the testing results of a four stroke four cylinder, DI diesel engine operating on pure rapeseed oil (RO) and its 2.5vol%, 5vol% and 7.5vol% blends with ethanol (ERO) and petrol (PRO). The purpose of this study is to examine the effect of ethanol and petrol addition to RO on blend viscosity, percentage changes in brake mean effective pressure (bmep), brake specific fuel consumption (bsfc), the brake thermal efficiency (çe) of a diesel engine and its emission composition, including NO, NO2, NOX, CO, CO2, HC and the smoke opacity of exhausts. The addition of 2.5, 5 and 7.5vol% of ethanol and the same percentage of petrol into RO, at a temperature of 20 °C, diminish the viscosity of the blends by 9.2%, 21.3%, 28.3% and 14.1%, 24.8%, 31.7% respectively. Heating biofuels up to a temperature of 60 °C, diminishes the kinematic viscosity of RO, blends ERO2.5–7.5 and PRO2.5–7.5 4.2, 3.9–3.8 and 3.9–3.7 times accordingly. At a speed of 1400–1800 min‐1, bmep higher by 1.3% if compared with that of RO (0.772–0.770 MPa) ensures blend PRO2.5, whereas at a rated speed of 2200 min‐1 , bmep higher by 5.6–2.7% can be obtained when fuelling the loaded engine, ë = 1.6, with both PRO2.5–5 blends. The bsfc of the engine operating on blend PRO2.5 at maximum torque and rated power is respectively 3.0% and 5.5% lower. The highest brake thermal efficiency at maximum torque (0.400) and rated power (0.415) compared to that of RO (0.394) also suggests blend PRO2.5. The largest increase in NOXemissions making 1907 ppm (24.8%) and 1811 ppm (19.6%) compared to that of RO was measured from a more calorific blend PRO7.5 (9.99% oxygen) at low (1400 min‐1) and rated (2200 min‐1) speeds. The emission of carbon monoxide from blends ERO2.5–5 throughout the whole speed range runs lower from 6.1% to 32.9% and the smoke opacity of the fully loaded engine changes from 5.1% which is a higher to 46.4% which is a lower level if compared to the corresponding data obtained using pure RO. The CO2 emissions of carbon monoxide and the temperature of the exhausts generated by the engine running at a speed of 2200 min‐1 diminish from 7.8 vol% to 6.3vol% and from 500 °C to 465 °C due to the addition of 7.5vol% of ethanol to RO.


Sign in / Sign up

Export Citation Format

Share Document