scholarly journals Experimental Study on the Effects of Initial Shear Stress and Vibration Frequency on Dynamic Strength of Saturated Sands

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jian Zhang ◽  
Jiuting Cao ◽  
Sijie Huang

The cyclic triaxial system is used to investigate the effects of confining pressure, initial shear stress, cyclic stress ratio, and vibration frequency on the dynamic strength characteristics of saturated sand in the Wenchuan area. Results show that when the vibration frequency is constant, the dynamic strength of sand increases with the increase of the consolidation ratio. However, when the consolidation ratio exceeds a certain value, the dynamic strength of sand decreases or increases slowly. The dynamic internal friction angle first increases and then decreases with the increase of consolidation ratio, and the dynamic internal friction angle under different initial shear stresses differs by a maximum of about 12%. When the failure cycles are constant, the dynamic strength and the dynamic internal friction angle of the sand increase with the increase of vibration frequency, and the dynamic internal friction angle at different frequencies differs by a maximum of about 7%. When the cyclic stress ratio is constant, the higher the vibration frequency, the greater the cycles required to achieve the failure. As the cyclic stress ratio decreases, the influence of the vibration frequency on the failure cycles is gradually reduced.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jian Zhang ◽  
Yangguang Sun ◽  
Jiuting Cao

The deformation and strength characteristics of saturated clay are studied through a cyclic triaxial test of clay in the Wenchuan earthquake area. Specifically, the effects of cyclic stress ratio, initial shear stress, and vibration frequency on the dynamic characteristics of saturated clay are analysed. Results show a failure strain in the dynamic strain development of saturated clay. Before the failure strain, the dynamic strain of soil develops slowly. After the failure strain, the soil strain increases sharply and leads to failure. Under the same confining pressure, the failure strain produced by different cyclic stress ratios has a linear relationship with the failure frequency. The dynamic strain development curve of saturated clay can be simplified to failure, transition, and stability types, which are mainly affected by the cyclic stress ratio. Initial shear stress and vibration frequency have significant effects on the deformation and strength characteristics of saturated clay. The larger the initial shear stress or the lower the vibration frequency is, the more sufficient the dynamic strain of soil develops and the fewer the number of cycles required to reach the same dynamic strain. Under the same number of cycles, the larger the initial shear stress or the lower the vibration frequency, the smaller the dynamic stress required to cause soil failure and the lower the dynamic strength of the soil. A turning point exists in the dynamic strength curve of clay. The smaller the initial shear stress or the higher the vibration frequency, the smoother the curve after the turning point and the smaller the tangent slope.


2012 ◽  
Vol 193-194 ◽  
pp. 925-930
Author(s):  
Xiao Ling Chen ◽  
Dong Li ◽  
Rui Min Liu

Due to influence by many factors like soil classification, viscosity property and vibration frequency, there is no common view yet about the effect of frequency on dynamic pore pressure and characteristics. In order to study the development of pore pressure, strain and dynamic strength of Hangzhou Bay undisturbed structural silty clay under different vibration frequencies, cyclic triaxial tests were performed. The test results indicate that the frequency has little influence on pore pressure and strain when they didn’t reach the threshold values, but once they exceeded the threshold values the frequency will has strong influence. There is critical cyclic stress ratio when the cyclic stress ratio has not reached that value, the frequency has no influence on dynamic strength. For the given cycles, the higher the frequency is, the bigger the dynamic strength is. And with the increment of frequency, the influence on dynamic is decreased eventually.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2018 ◽  
Vol 68 (2) ◽  
pp. 150 ◽  
Author(s):  
Yoon Keon Kim ◽  
Woo Chun Choi

The debris generated by the explosion of a building or ammunition is flown far away through the ricochet phenomenon. The debris contains a very large amount of energy, and a risk factor surrounding it may be applied. The safety distance from debris is set from experiments or FEM analysis. The ricochet of debris is affected not only by the initial conditions of the debris, but also by the conditions of the medium. In this paper, the effect of sand temperature on the ricochet of sphere projectiles was investigated through experiments and FEM, by measuring the shear stress and internal friction angle when the sand temperature increases. As the temperature of the sand increases, the shear stress and the internal friction angle decrease, and the penetration depth of the projectile increases. As the depth of penetration becomes longer, the kinetic energy is lost more by the friction force with the sand and, the sphere projectile speed decreases more. This is mainly caused by the energy loss of the projectile, so the kinetic energy of the ricocheted projectile is reduced. Therefore, when setting the optimized inhabited building distance (IBD), the conditions of the medium should be taken into account.


2012 ◽  
Vol 446-449 ◽  
pp. 1563-1567 ◽  
Author(s):  
Jin Cai Wang ◽  
Ming Jie Zhao ◽  
Wei Chen ◽  
Kui Wang

By using dynamic and static triaxial experiments to test the saturated composite soil-rock medium of different soil-rock ratio. Measure related power indicators and analyze the variation rules and tendency, and make comparative research on the dynamic and static strength of composite mediums with different soil-rock ratio. Studies have shown the tendency that the static strength and internal friction angle increases while the cohesive force increases and then decreases with the decrease in soil-rock ratio. Under the same compactness, the dynamic strength of composite soil-rock medium increases with the decrease in soil-rock ratio, and decreases significantly with the improvement of seismic intensity; For one rock ratio, dynamic cohesive force decreases with the gradual increase of intensity, and decreases faster with the decrease in soil-rock ratio. While the dynamic internal friction angle decreases with the increase of intensity. At the same intensity, which means the same vibration frequency, dynamic cohesive force increases with the decrease in the soil-rock ratio and so does dynamic internal friction angle.


2018 ◽  
Vol 477 (1) ◽  
pp. 523-536 ◽  
Author(s):  
Brandon Dugan ◽  
Xin Zhao

AbstractDirect simple shear experiments on mud samples from 0 to 15 mbsf (metres below seafloor) in the Ursa Basin (northern Gulf of Mexico) document that stress level impacts shear strength and pore pressure during failure. As burial depth increased (from 7.35 to 13.28 mbsf), cohesion decreased (from 12.3 to 6.5 kPa) and the internal friction angle increased (from 18° to 21°). For a specimen from 11.75 mbsf, an increase in maximum consolidation stress (from 45 to 179 kPa) resulted in an increase in the shear-induced pore pressure (from 29 to 150 kPa); however, the normalized peak shear stress decreased (from 0.37 to 0.25). Our results document that consolidation at shallow depths induces a positive feedback on pore-pressure genesis. For resedimented samples, which lack a stress history, cohesion was 3.6 kPa and the internal friction angle was 24°. As the maximum consolidation stress increased (from 40 to 254 kPa) on resedimented samples, the shear-induced pore pressure increased (from 22 to 203 kPa), whereas the normalized peak shear stress decreased (from 0.32 to 0.25). Our experiments showed that resedimented samples have similar strength and failure behaviour to intact samples. By constraining pore pressure, strength and initial stress state, we gain a better insight into slope-failure dynamics. Therefore, our experiments provide constraints on strength and shear-induced pore pressure at the onset of shallow failure that could be included in slope-failure and hazard models.


2021 ◽  
Vol 18 (5) ◽  
pp. 576-613
Author(s):  
A. S. Aleksandrov

Introduction. Checking the soil of the subgrade and the layers of road pavement made of loosely cohesive materials by shear resistance is one of the three mandatory conditions for calculating road clothing according to strength criteria. The methodology for checking the soil of the subgrade and the sandy layers of the road pavement is constantly being modified, which is why changes concerning certain calculation details appear in each new version of the regulatory document. The purpose of this work is to analyze the advantages of the classical solution of A.M. Krivissky and to reveal the essence of the errors made in subsequent modifications of this calculation.Materials and methods. The analysis of solutions is carried out from the standpoint of compliance with the basics of mechanics. It is shown that the calculation of the total shear stress in the classical solution of A.M. Krivissky is performed in accordance with the principle of force superposition, which consists in calculating the components of the stress tensor from each force (time load and the own weight of the layer materials) separately, followed by summing the corresponding components. In this case, the active shear stresses from the temporary load and the own weight of the materials are calculated as the equivalent stress of the Mohr-Coulomb criterion. The calculation of these two components of the total shear stress is performed at the same value of the internal friction angle. Since the angle of inclination of the sliding surface to the main axes is determined by the sum or difference of 45 degrees and half of the internal friction angle, the tangential and normal stresses, which are components of the active shear stress, both from the temporary load and the own weight of the materials, are determined for the same shear surface rotated to the main axes at the same angle. In the current normative calculations, the active shear stresses from the temporary load and the own weight of the materials are determined at different angles of internal friction. This means that the active shear stresses from the temporary load and the own weight of the materials act on two different shear surface rotated to the main axes at different angles. Such stresses cannot be summed up or compared with each other. In addition to this error of the normative calculation methods, their other disadvantages are given.Results. As a result of a detailed analysis of the known modifications of the classical solution, obvious contradictions to the principles of continuum mechanics are established. As an alternative to modern calculation criteria for shear resistance, the article presents criteria for soil strength in which the shear stress exceeds the equivalent stress in the Mohr-Coulomb criterion. The principle of deducing formulas for calculating the first critical load and the total shear stress from the strength criteria under consideration is shown.Conclusion. Conclusions are drawn about the need to return to the classical solution obtained by specialists of the Leningrad School of the USSR, or to develop a fundamentally new solution based on a new plasticity condition in which the total shear stress exceeds the similar characteristic of the stress state of the original Mohr - Coulomb criterion.


2020 ◽  
Vol 205 ◽  
pp. 05001
Author(s):  
Soheib Maghsoodi ◽  
Olivier Cuisinier ◽  
Farimah Masrouri

In energy geostructures, which exploit the heat in soil using earth contact elements, the interface is subjected to cyclic thermo-mechanical loads. Monotonic and cyclic constant-volume equivalent-undrained (CVEU) direct shear tests were performed on clay-clay and clay-structure interface at different temperatures (22 and 60 °C). Different cyclic and average stress ratios (CSR and ASR) were applied to the kaolin clay-structure interface under 300 kPa of normal stress. The results showed that, the number of cycles to failure for the clay-structure interface test was lower than that for the clay-clay case in the same range of cyclic and average shear stress ratios. In cyclic clay-structure tests, decreasing the cyclic stress ratio, increased the number of cycles to failure; however, decreasing the average shear stress ratio decreased the number of cycles to failure. Increasing the temperature, decreased the rate of strain accumulation and the number of cycles to failure increased by 2-3 times. The rate of degradation (degradation parameter, t) decreased by 16% with heating from 22 to 60 °C for the different cyclic stress ratios tested.


2019 ◽  
Vol 9 (21) ◽  
pp. 4618
Author(s):  
Jun Gao ◽  
Faning Dang ◽  
Zongyuan Ma ◽  
Yi Xue ◽  
Jie Ren

With the rapid development of asphalt concrete core rockfill dams (ACCRDs), the construction of ultra-high asphalt concrete core rockfill dams (UACCRDs) has been improved significantly. However, the security problems of asphalt concrete core (ACC) become very prominent with the increase of dam height. The shear failure control standard and tensile failure control standard of ACC are suggested. The mechanisms of ACC that generate high shear stress and high tensile stress are investigated. Based on the definition of stress level and the transmission mechanism of arch structures, the improvement methods that reduce the high shear stress and high tensile stress of ultra-high asphalt concrete core (UACC) are proposed and investigated. The results show that the stress level of ACC can be reduced significantly by the increase of the strength parameters of ACC (failure ratio, cohesion, and internal friction angle). The following value ranges of the failure ratio, cohesion, and internal friction angle of ACC for the suitable construction of UACCRDs are recommended: Rf ≥ 0.75, C ≥ 0.30 MPa, and φ ≥ 28.5° (h = 150 m), with the growth gradient adjusted by 5%, 15%, and 5%/25 m. The tensile stress and tensile stress area can be reduced obviously by the new type of dams (curved asphalt concrete core rockfill dams (CACCRDs)). The value ranges of the curvature of CACC (k ≥ 1.0 × 10−3) for the suitable construction of UACCRDs are recommended.


Sign in / Sign up

Export Citation Format

Share Document