scholarly journals Determining the Resource of Safe Operation for Objects by Images

2020 ◽  
Vol 209 ◽  
pp. 03003 ◽  
Author(s):  
Vyacheslav Andreev ◽  
Olga Andreeva ◽  
Vasiliy Gai ◽  
Maria Berberova

In this paper, a systematic study of the microstructure damage process of metals and alloys was carried out. The main elements of the microstructure surface image, as well as the rules for the formation and interaction of rough slip traces and cracks to determine the model of damage accumulation on the image of the microstructure surface under cyclic loading are determined. A classifier that allows to determine the number of loading cycles before a sample goes out of service is proposed. A modernized structure of the convolutional neural network was developed to classify images of the damaged microstructure of the metals and alloys surface. The proposed classifier for determining the number of loading cycles made it possible to achieve a classification accuracy of 78.43%.

2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2018 ◽  
Vol 145 ◽  
pp. 488-494 ◽  
Author(s):  
Aleksandr Sboev ◽  
Alexey Serenko ◽  
Roman Rybka ◽  
Danila Vlasov ◽  
Andrey Filchenkov

Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


2020 ◽  
Vol 8 (4) ◽  
pp. 469
Author(s):  
I Gusti Ngurah Alit Indrawan ◽  
I Made Widiartha

Artificial Neural Networks or commonly abbreviated as ANN is one branch of science from the field of artificial intelligence which is often used to solve various problems in fields that involve grouping and pattern recognition. This research aims to classify Letter Recognition datasets using Artificial Neural Networks which are weighted optimally using the Artificial Bee Colony algorithm. The best classification accuracy results from this study were 92.85% using a combination of 4 hidden layers with each hidden layer containing 10 neurons.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Saad Albawi ◽  
Oguz Bayat ◽  
Saad Al-Azawi ◽  
Osman N. Ucan

Recently, social touch gesture recognition has been considered an important topic for touch modality, which can lead to highly efficient and realistic human-robot interaction. In this paper, a deep convolutional neural network is selected to implement a social touch recognition system for raw input samples (sensor data) only. The touch gesture recognition is performed using a dataset previously measured with numerous subjects that perform varying social gestures. This dataset is dubbed as the corpus of social touch, where touch was performed on a mannequin arm. A leave-one-subject-out cross-validation method is used to evaluate system performance. The proposed method can recognize gestures in nearly real time after acquiring a minimum number of frames (the average range of frame length was from 0.2% to 4.19% from the original frame lengths) with a classification accuracy of 63.7%. The achieved classification accuracy is competitive in terms of the performance of existing algorithms. Furthermore, the proposed system outperforms other classification algorithms in terms of classification ratio and touch recognition time without data preprocessing for the same dataset.


2013 ◽  
Vol 373-375 ◽  
pp. 1155-1158
Author(s):  
Kang Yan ◽  
Zhong Yuan Zhang

The detection of hydrophobicity is an important way to evaluate the performance of composite insulator, which is helpful to the safe operation of composite insulator. In this paper, the image processing technology and Back Propagation neural network is introduced to recognize the composite insulator hydrophobicity grade. First, hydrophobic image is preprocessed by histogram equalization and adaptive median filter, then the image was segmented by Ostu threshold method, and four features associated with hydrophobicity are extracted. Finally, the improved Back Propagation neural network is adopted to recognize composite insulator hydrophobicity grade. The experimental results show that the improved Back Propagation neural network can accurately recognize the composite insulator hydrophobicity


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3451 ◽  
Author(s):  
Sławomir Opałka ◽  
Bartłomiej Stasiak ◽  
Dominik Szajerman ◽  
Adam Wojciechowski

Mental tasks classification is increasingly recognized as a major challenge in the field of EEG signal processing and analysis. State-of-the-art approaches face the issue of spatially unstable structure of highly noised EEG signals. To address this problem, this paper presents a multi-channel convolutional neural network architecture with adaptively optimized parameters. Our solution outperforms alternative methods in terms of classification accuracy of mental tasks (imagination of hand movements and speech sounds generation) while providing high generalization capability (∼5%). Classification efficiency was obtained by using a frequency-domain multi-channel neural network feeding scheme by EEG signal frequency sub-bands analysis and architecture supporting feature mapping with two subsequent convolutional layers terminated with a fully connected layer. For dataset V from BCI Competition III, the method achieved an average classification accuracy level of nearly 70%, outperforming alternative methods. The solution presented applies a frequency domain for input data processed by a multi-channel architecture that isolates frequency sub-bands in time windows, which enables multi-class signal classification that is highly generalizable and more accurate (∼1.2%) than the existing solutions. Such an approach, combined with an appropriate learning strategy and parameters optimization, adapted to signal characteristics, outperforms reference single- or multi-channel networks, such as AlexNet, VGG-16 and Cecotti’s multi-channel NN. With the classification accuracy improvement of 1.2%, our solution is a clear advance as compared to the top three state-of-the-art methods, which achieved the result of no more than 0.3%.


Sign in / Sign up

Export Citation Format

Share Document