scholarly journals S, N co-doped pitch-based composite carbon nanofibers with enlarged interlayer distance as a superior potassium ion batteries anode

2020 ◽  
Vol 213 ◽  
pp. 02003
Author(s):  
Chang Liu ◽  
Ze Song ◽  
Tianyi Ma ◽  
Jieshan Qiu

Potassium ion batteries (PIBs), an alternative to traditional lithium ion batteries to large-scale energy storage device, have attracted tremendous attention, due to abundant reserves of potassium resources and low cost. However, it still remains challenge to fabricate suitable anode materials with high K storage capabilities. In this work, facile S/N co-doped pitch based composite carbon nanofibers has been fabricated by electrospinning of coal tar pitch and polyacrylonitrile, and followed by carbonization under H2S/Ar atmosphere. The formation of -C-S-Cbond effectively increased S utilization, and enlarged carbon interlayer distance to some degree. As anode for PIBs, the S/N co-doped carbon displayed enhancement of capacity, rate capability and cycle stability. This work would shed a light on the fabrication of S/N co-doped materials for both battery, supercapacitor and electrocatalytic electrodes.

Author(s):  
Sen Yang ◽  
Ting Li ◽  
Yiwei Tan

Potassium-ion batteries (PIBs) that serve as low-cost and large-scale secondary batteries are regarded as promising alternatives and supplement to lithium-ion batteries. Hybrid active materials can be featured with the synergistic...


2019 ◽  
Vol 19 (6) ◽  
pp. 3610-3615 ◽  
Author(s):  
Lifeng Wang ◽  
Kaiyuan Wei ◽  
Pengjun Zhang ◽  
Hong Wang ◽  
Xiujun Qi ◽  
...  

Potassium-ion batteries (PIBs), as one of the alternatives to lithium-ion batteries (LIBs), have attracted considerable attention on account of the affluence and low-cost of potassium. Moreover, CoC2O4 and graphene oxide (GO) have been used very well in lithium-ion batteries. Hence, the hybrid CoC2O4/GO was investigated as a new anode material for PIBs. The hybrid CoC2O4/GO was synthesized by a facile and cheap method combined with supersonic dispersion. Electrochemical measurements reveal that the hybrid CoC2O4/GO delivered an excellent cycling stability of 166 mAh g−1 at 50 mA g−1 and a superior rate capability even at 1 A g−1. These results demonstrate although the cycle ability was insufficient for practical applications, transition-metal oxalates composites can still bring new hope to the development of PIBs.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

2021 ◽  
Vol 2076 (1) ◽  
pp. 012060
Author(s):  
Xiaoyu Yang ◽  
Ling Tong ◽  
Lin Wu ◽  
Baoguo Zhang ◽  
Zhiyuan Liao ◽  
...  

Abstract Silicon nanostructures are attracting growing attention due to their properties and promising application prospects in solar energy conversion and storage devices, thermoelectric devices, lithium-ion batteries, and biosensing technologies. The large-scale and low-cost preparation of silicon nanostructures is critical for silicon-based advanced functional devices commercialization. In this paper, the feasibility and mechanism of silicon nanostructure fabricated by non-metallic carbon catalytic etching, as well as the currently existing problems and future development trend are reviewed.


NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050062
Author(s):  
Zhaolei Meng ◽  
Xiaojian He ◽  
Song Han ◽  
Zijian Hu

Carbon materials are generally employed as supercapacitor electrodes due to their low- cost, high-chemical stability and environmental friendliness. However, the design of carbon structures with large surface area and controllable porous structure remains a daunt challenge. In this work, a three-dimensional (3D) hybrid aerogel with different contents of MoS2 nanosheets in 3D graphene aerogel (MoS2-GA) was synthesized through a facial hydrothermal process. The influences of MoS2 content on microstructure and subsequently on electrochemical properties of MoS2-GA are systematically investigated and an optimized mass ratio with MoS2: GA of 1:2 is chosen to achieve high mechanical robustness and outstanding electrochemical performance in the hybrid structure. Due to the large specific surface area, porous structure and continuous charge transfer network, such MoS2-GA electrodes exhibit high specific capacitance, good rate capability and excellent cyclic stability, showing great potential in large-scale and low-cost fabrication of high-performance supercapacitors.


2020 ◽  
Vol 2 (9) ◽  
pp. 4187-4198
Author(s):  
Ya Ru Pei ◽  
Ming Zhao ◽  
Hong Yu Zhou ◽  
Chun Cheng Yang ◽  
Qing Jiang

As an anode in potassium-ion batteries, the hollow N-doped carbon nanofibers fabricated from polyaniline exhibit ultra-high rate capability and ultra-long cycling life.


2019 ◽  
Vol 72 (6) ◽  
pp. 473 ◽  
Author(s):  
Zongkai Yue ◽  
Yaozu Kang ◽  
Tianyu Mao ◽  
Mengmeng Zhen ◽  
Zhiyong Wang

Titanium dioxide (TiO2) has been widely investigated as the electrode material for lithium ion batteries (LIBs), due to its low cost, small volume expansion, and high environmental friendliness. However, the fading capacity and short cycle life during the cycling process lead to poor cycling performance. Herein, multilayer TiO2 nanobelts with a high specific surface area and with many pores between nanoparticles are constructed via a simple and large-scale approach. Benefiting from the multilayer nanobelt structure, as-prepared TiO2 nanobelts deliver a high reversible capacity, strong cycling stability, and ultra-long cycle life (~185mAhg−1 at 500mAg−1 after 500 cycles) as electrode materials for LIBs.


MRS Advances ◽  
2020 ◽  
Vol 5 (43) ◽  
pp. 2221-2229
Author(s):  
G. Greco ◽  
S. Passerini

AbstractThe most promising candidate as an everyday alternative to lithium-ion batteries (LIBs) are sodium-ion batteries (NIBs). This is not only due to Na abundance, but also because the main principles and cell structure are very similar to LIBs. Due to these benefits, NIBs are expected to be used in applications related to large-scale energy storage systems and other applications not requiring top-performance in terms of volumetric capacity. One important issue that has hindered the large scale application of NIBs is the anode material. Graphite and silicon, which have been widely applied as anodes in NIBs, do not show great performance. Hard carbons look very promising in terms of their abundance and low cost, but they tend to suffer from instability, in particular over the long term. In this work we explore a carbon-coated TiO2 nanoparticle system that looks very promising in terms of stability, abundance, low-cost, and most importantly that safety of the cell, since it does not suffer from potential sodium plating during cycling. Maintaining a nano-size and consistent morphology of the active material is a crucial parameter for maintaining a well-functioning cell upon cycling. In this work we applied Anomalous Small Angle X-Ray Scattering (ASAXS) for the first time at the Ti K-edge of TiO2 anatase nanoparticles on different cycled composite electrodes in order to have a complete morphological overview of the modifications induced by sodiation and desodiation. This work also demonstrates for the first time that the nanosize of the TiO2 is maintained upon cycling, which is in agreement with the electrochemical stability.


Sign in / Sign up

Export Citation Format

Share Document