scholarly journals Screening of essential oils activity against a gram negative psychrophilic bacterium isolated from aquatic environment (Water & Biofilm)

2021 ◽  
Vol 234 ◽  
pp. 00038
Author(s):  
Assia. Kritihi ◽  
Khadija Ouaissa ◽  
Abdelaziz Maychal ◽  
Younes Oumessaoud ◽  
Mustapha Hasnaoui

Among the applications of medicinal plants, it is their use as antimicrobial agents. The objective of this study was to investigate the effect of some essential oils against an etiological pathogen Flavobacterium spp. responsible for several lost in rainbow trout, (Oncorhynchus mykiss) hatcheries, the strains used in this study were isolated from rearing tanks water and biofilm, identified as Flavobacterium spp. based on phenotypic, biochemical and enzymatic characterizations. A collection of eight essential oils were extracted, analyzed and tested for an inhibitory activity against the isolated strains, the effect on this bacterium has been demonstrated by the aromatogram method based on a screening of bacterial growth in a solid medium culture with disks containing essential oils. Our study’s results show that the chemical composition of the extracted essential oils play a crucial role in their antibacterial activity, which varies from 6 mm up to 34 mm as maximal inhibitory diameter.

2019 ◽  
Vol 24 ◽  
pp. 2515690X1988627 ◽  
Author(s):  
Mekonnen Sisay ◽  
Negussie Bussa ◽  
Tigist Gashaw ◽  
Getnet Mengistu

Medicinal plants are targeted in the search for new antimicrobial agents. Nowadays, there is an alarmingly increasing antimicrobial resistance to available agents with a very slow development of new antimicrobials. It is, therefore, necessary to extensively search for new agents based on the traditional use of herbal medicines as potential source. The antibacterial activity of 80% methanol extracts of the leaves of Verbena officinalis (Vo-80ME), Myrtus communis (Mc-80ME), and Melilotus elegans (Me-80ME) was tested against 6 bacterial isolates using agar well diffusion technique. In each extract, 3 concentrations of 10, 20, and 40 mg/well were tested for each bacterium. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were also determined. Vo-80ME and Mc-80ME exhibited promising antibacterial activity against Staphylococcus aureus with the highest zone of inhibition being 18.67 and 26.16 mm, respectively at concentration of 40 mg/well. Regarding gram-negative bacteria, Vo-80ME exhibited an appreciable activity against Escherichia coli and Salmonella typhi. Mc-80ME displayed remarkable activity against all isolates including Pseudomonas aeruginosa with the maximum zone of inhibition being 22.83 mm. Me-80ME exhibited better antibacterial activity against E coli, but its secondary metabolites had little or no activity against other gram-negative isolates. The MIC values of Vo-80ME ranged from 0.16 to 4.00 mg/mL. The lowest MIC was observed in Mc-80ME, with the value being 0.032 mg/mL. Mc-80ME had bactericidal activity against all tested bacterial isolates. Mc-80ME showed remarkable zone of inhibitions in all tested bacterial isolates. Besides, Vo-80ME showed good antibacterial activity against S aureus, E coli, and S typhi. Conversely, Me-80ME has shown good activity against E coli only. Generally, M communis L and V officinalis have good MIC and MBC results.


2005 ◽  
Vol 60 (1-2) ◽  
pp. 30-34 ◽  
Author(s):  
Ali Sonboli ◽  
Fereshteh Eftekhar ◽  
Morteza Yousefzadi ◽  
Mohammad Reza Kanani

The chemical composition of the essential oils obtained from two samples (GP1 and GP2) of Grammosciadium platycarpum Boiss. was analyzed by GC and GC-MS. The analysis of the oils resulted in the identification of twenty-two constituents. Linalool (79.0% - GP1, 81.8% - GP2) and limonene (10.0%, 5.8%) were found to be the major components, respectively. The in vitro antibacterial activities of these oils and their main compounds against seven Gram-positive and Gram-negative bacteria were investigated. The results exhibited that the total oils and their major components possess strong to moderate activities against all the tested bacteria except for Pseudomonas aeruginosa.


2019 ◽  
Vol 6 (4) ◽  
pp. 172-179
Author(s):  
Ashraf Kariminik ◽  
Mehran Moradalizadeh ◽  
Mohammad Mehdi Foroughi ◽  
Hamid Tebyanian ◽  
Mohammad Mehdi Motaghi

2011 ◽  
Vol 63 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Ghasemi Pirbalouti ◽  
Nikobin Broujeni ◽  
Manouchehr Momeni ◽  
Malek Poor ◽  
Behzad Hamedi

Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems. Ten Iranian medicinal plants were assessed for their antimicrobial activity against Streptococcus iniae isolates obtained from diseased Oncorhynchus mykiss (Salmonidae; Walbaum, 1972) collected from fish farms in Iran. The antibacterial activity of ethanol extracts of Punica granatum, Quercus branti, Glycyrrhiza glabra and essential oils of Heracleum lasiopetalum, Satureja bachtiarica, Thymus daenensis, Myrtus communis, Echinophora platyloba, Kelussia odoratissima and Stachys lavandulifolia against Steptococcus iniae was evaluated by disc diffusion and serial dilution assays. Most of the extracts and essential oils showed a relatively high antibacterial activity against Streptococcus iniae. Of the plants studied, the most active extracts were those obtained from the essential oils of Satureja bachtiarica, Echinophora platyloba, Thymus daenensis and the ethanol extract of Quercus branti. Some of the extracts were active against Streptococcus iniae. Two essential oils showed lower MIC values; Heracleum lasiopetalum (78 ?g/ml) and Satureja bachtiarica (39 ?g/ml). The essential oil of Satureja bachtiarica could be an important source of antibacterial compounds against the Streptococcus iniae isolated from rainbow trout.


2021 ◽  
Vol 2 (2) ◽  
pp. 114-123
Author(s):  
Rudwan Badr Al-Deen ◽  
Bassam Aloklah ◽  
Lina Al-Amir

Citrus peel is an important source of essential oils (EOs). However, these EOs are not invested, although the annual production of citrus is high in Syria. The current study aimed to investigate chemical composition and antibacterial activity of some citrus peel EOs, namely: lemon (Citrus limon), orange (C. sinensis), grapefruit (C. paradisi), mandarin (C. reticulata) and bitter orange (C. aurantium). Gas chromatography–mass spectrometry (GC/MS) (gas chromatograph type: Agilent 7890A, auto sampler type: Agilent 7683B coupled to mass spectrometer, type Agilent 5975C, using DB–1 capillary column. EOs. concentration 1: 10 v/v in chloroform, injection volume 1 µl, split ratio 1: 80), was used to identify the chemical composition of the EOs, which were extracted by hydrodistillation technique, and chemical composition was expressed as Mean ± SD of three replications using SPSS V17 software. Minimal bactericidal concentration (MBC) was used to determine the antibacterial activity against five Gram-positive bacteria (Bacillus cereus, B. licheniformis, Staphylococcus haemolyticus, S. lugdunensis, Enterococcus faecalis) and five Gram negative bacteria (Klebsiella oxytoca, Citrobacter koseri, Serratia liquefaciens, Pseudomonas fluorescens and P. luteola). Limonene formed the vast majority of EOs (between 62.16 and 95.26% in lemon and orange EOs, respectively), but there were other active components, such as α–Pinene and β–Pinene. Lemon EO was the most effective one, with MBC values ranged between 4 μl.ml–1 (against Bacillus cereus) and 50 μl.ml–1 (against Serratia liquefaciens). Pseudomonas luteola (a Gram-negative bacterium) was the most sensitive species to citrus EOs (MBC values ranged between 4 and 50 μl.ml–1 for lemon and orange EOs, respectively); while S. liquefaciens (a Gram-negative bacterium) was the most resistant bacterium (MBC values were 50 and 150 μl.ml–1 for lemon and mandarin EOs, respectively) among all species studied in the current research.


2017 ◽  
Vol 60 (3) ◽  
Author(s):  
Dayane Silva Rocha ◽  
Janete Magali Da Silva ◽  
Daniela Maria Do Amaral Ferraz Navarro ◽  
Claúdio Augusto Gomes Camara ◽  
Camila Soledade De Lira ◽  
...  

The essential oils from leaves, stems and roots of Piper caldense were analyzed by GC-MS. The antibacterial potential of the oils was evaluated against gram-negative bacteria and gram-positive bacteria. The major chemical constituents that were identified from various parts of this plant were α-cardinal, α-muurolol, tujopsan-2-β-ol and δ-cadiene in the leaves, valencene, pentadecane, elina-3,7-11-dieno α-terpineol in the roots and terpine-4-ol, α-terpineol, α-cadinol 2-β-ol in the stems. Tissue oils showed antibacterial activity against the bacteria tested except for Enterococcus faecalis. This is the first report of the biological activity and chemical composition essential oil of P. caldense.


2019 ◽  
Author(s):  
F.Z. Radi ◽  
N. El Hamzaoui ◽  
M. Regragui ◽  
A. Kholtei ◽  
H. Oulhaj ◽  
...  

In infectiology, some essential oils (EOs) are able to competewith antibiotic therapy and even surpass it; it is in this context that a study of the chemical composition and the antibacterial power of the EOs of three aromatic and widely used medicinal plants in traditional medicine was conducted which are Satureja calamintha subsp. nepeta (L.) Briq, Lavandula multifida L., and Mentha pulegium L. The extracted EO yields were of the order of 2.6%, 0.12%, and 5.29% for Satureja calamintha, Lavandula multifida, and Mentha pulegium, respectively. The obtained EOs were analyzed by gas chromatography coupled with mass spectrometry (GC/MS). The results of these analyses showed that Lavandula multifida contains carvacrol as a majority compound (70.65%); by contrast, the pulegone is the majority compound of Satureja calamintha and Mentha pulegium that contain about 87.04% and 71.97%, respectively. The EOs with the pulegone as predominant compound (Mentha pulegium and Satureja calamintha) showed higher antibacterial activity when tested against some multiresistant strains, compared to those with the carvacrol as major compound. In conclusion, this study may open up prospects for the formulation of phytomedicines against resistant and nonresistant bacteria incriminated in nosocomial infections.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 155
Author(s):  
Nsevolo Samba ◽  
Radhia Aitfella-Lahlou ◽  
Mpazu Nelo ◽  
Lucia Silva ◽  
Rui Coca. ◽  
...  

The purpose of the study was to determine the chemical composition and antibacterial activity of Lippia multiflora Moldenke essential oils (EOs) collected in different regions of Angola. Antibacterial activity was evaluated using the agar wells technique and vapour phase test. Analysis of the oils by GC/MS identified thirty-five components representing 67.5 to 100% of the total oils. Monoterpene hydrocarbons were the most prevalent compounds, followed by oxygenated monoterpenes. The content of the compounds varied according to the samples. The main components were Limonene, Piperitenone, Neral, Citral, Elemol, p-cymene, Transtagetone, and Artemisia ketone. Only one of the eleven samples contained Verbenone as the majority compound. In the vapour phase test, a single oil was the most effective against all the pathogens studied. The principal component analysis (PCA) and hierarchical cluster analysis (HCA) of components of the selected EOs and inhibition zone diameter values of agar wells technique allowed us to identify a variability between the plants from the two provinces, but also intraspecific variability between sub-groups within a population. Each group of essential oils constituted a chemotype responsible for their bacterial inhibition capacity. The results presented here suggest that Angolan Lippia multiflora Moldenke has antibacterial properties and could be a potential source of antimicrobial agents for the pharmaceutical and food industry.


Sign in / Sign up

Export Citation Format

Share Document