scholarly journals Establishment and application of soil hydraulic erosion model based on GIS and USLE model

2021 ◽  
Vol 257 ◽  
pp. 03056
Author(s):  
Ke-xin Guo ◽  
Ying-xian Cao

Soil erosion is the most common form of soil degradation, which is the main problem of soil environmental destruction worldwide. Based on the USLE and GIS remote sensing inversion and superposition analysis technology, this study simulated and calculated soil hydraulic erosion in Fangshan World Geological Park, China in 2011, 2012 and 2013, analyzed its spatial-temporal dynamic changes, and explored the key points of soil erosion control in the study area. The results show that (1) The main erosion occurred at 25°-35° steep slope and 400-800m height, which accounted for more than 30% of the total soil erosion in all the three years. (2) The average erosion modulus and erosion amount in 2012 were significant higher than that in 2011 and 2013 at each slope grade, shown that the soil erosion of 2012 is influenced by natural disaster.With the increase of slope grade, the average modulus also increased.

Science ◽  
1994 ◽  
Vol 264 (5166) ◽  
pp. 1661-1662 ◽  
Author(s):  
J. Glanz
Keyword(s):  

2018 ◽  
Vol 6 (3) ◽  
pp. 687-703 ◽  
Author(s):  
Joris P. C. Eekhout ◽  
Wilco Terink ◽  
Joris de Vente

Abstract. Assessing the impacts of environmental change on soil erosion and sediment yield at the large catchment scale remains one of the main challenges in soil erosion modelling studies. Here, we present a process-based soil erosion model, based on the integration of the Morgan–Morgan–Finney erosion model in a daily based hydrological model. The model overcomes many of the limitations of previous large-scale soil erosion models, as it includes a more complete representation of crucial processes like surface runoff generation, dynamic vegetation development, and sediment deposition, and runs at the catchment scale with a daily time step. This makes the model especially suited for the evaluation of the impacts of environmental change on soil erosion and sediment yield at regional scales and over decadal periods. The model was successfully applied in a large catchment in southeastern Spain. We demonstrate the model's capacity to perform impact assessments of environmental change scenarios, specifically simulating the scenario impacts of intra- and inter-annual variations in climate, land management, and vegetation development on soil erosion and sediment yield.


2022 ◽  
Vol 14 (2) ◽  
pp. 348
Author(s):  
Yashon O. Ouma ◽  
Lone Lottering ◽  
Ryutaro Tateishi

This study presents a remote sensing-based index for the prediction of soil erosion susceptibility within railway corridors. The empirically derived index, Normalized Difference Railway Erosivity Index (NDReLI), is based on the Landsat-8 SWIR spectral reflectances and takes into account the bare soil and vegetation reflectances especially in semi-arid environments. For the case study of the Botswana Railway Corridor (BRC), the NDReLI results are compared with the RUSLE and the Soil Degradation Index (SDI). The RUSLE model showed that within the BRC, the mean annual soil loss index was at 0.139 ton ha−1 year−1, and only about 1% of the corridor area is susceptible to high (1.423–3.053 ton ha−1 year−1) and very high (3.053–5.854 ton ha−1 year−1) soil loss, while SDI estimated 19.4% of the railway corridor as vulnerable to soil degradation. NDReLI results based on SWIR1 (1.57–1.65 μm) predicted the most vulnerable areas, with a very high erosivity index (0.36–0.95), while SWIR2 (2.11–2.29 μm) predicted the same regions at a high erosivity index (0.13–0.36). From empirical validation using previous soil erosion events within the BRC, the proposed NDReLI performed better that the RUSLE and SDI models in the prediction of the spatial locations and extents of susceptibility to soil erosion within the BRC.


Author(s):  
Petru CARDEI ◽  
Vasile HEREA ◽  
Vergil MURARU ◽  
Raluca SFARU

This article presents a mathematical viewpoint as vector form on estimating the risk of erosion due to water action, starting from the original USLE. We started with a vector representation of pluviometric regime. Daily amount of rain during a year can be in the form vector graphics. This representation is equivalent to a vector. Starting from this representation is computed the factor of the rain erosivity. We found that other factors in the USLE formula allowed the same type of representation. These representations have been used in the daily calculating for the erosion. This point of view extends the USLE model using to the rainfall event erosivity assessment, similarly with the RUSLE models. This vision permit the comparison between the possible divisions of the annual period: month, weeks, days, hours, minutes or seconds. In this article the solution test are made by comparison of the result with experimental results obtained in the Valea Calugareasca vineyard.


2013 ◽  
Vol 37 (6) ◽  
pp. 1431-1440 ◽  
Author(s):  
Tiago Santos Telles ◽  
Sonia Carmela Falci Dechen ◽  
Maria de Fátima Guimarães

The problem of soil erosion in Brazil has been a focus of agricultural scientific research since the 19th century. The aim of this study was to provide a historical overview of the institutional landmarks which gave rise to the first studies in soil erosion and established the foundations of agricultural research in Brazil. The 19th century and beginning of the 20th century saw the founding of a series of institutions in Brazil, such as Botanical Gardens, executive institutions, research institutes, experimental stations, educational institutions of agricultural sciences, as well as the creation and diversification of scientific journals. These entities, each in its own way, served to foster soil erosion research in Brazil. During the Imperial period (1808-1889), discussions focused on soil degradation and conserving the fertility of agricultural land. During the First Republic (1889-1930), with the founding of various educational institutions and consolidation of research on soil degradation conducted by the Agronomic Institute of Campinas in the State of São Paulo, studies focused on soil depletion, identification of the major factors causing soil erosion and the measures necessary to control it. During the New State period (1930-1945), many soil conservation practices were developed and disseminated to combat erosion and field trials were set up, mainly to measure soil and water losses induced by hydric erosion. During the Brazilian New Republic (1945-1964), experiments were conducted throughout Brazil, consolidating soil and water conservation as one of the main areas of Soil Science in Brazil. This was followed by scientific conferences on erosion and the institutionalization of post-graduate studies. During the Military Regime (1964-1985), many research and educational institutions were founded, experimental studies intensified, and coincidently, soil erosion reached alarming levels which led to the development of the no-tillage system.


2021 ◽  
Author(s):  
Hua Zhang ◽  
Jinping Lei ◽  
Cungang Xu ◽  
Yuxin Yin

Abstract This study takes the north and south mountains of Lanzhou as the study area, calculates the soil erosion modulus of the north and south mountains of Lanzhou based on the five major soil erosion factors in the RUSLE model and analyzes the temporal and spatial dynamic changes of soil erosion and the characteristics of soil erosion under different environmental factors. The results show that the soil erosion intensity of the north and south mountains of Lanzhou is mainly micro erosion in 1995, 2000, 2005, 2010, 2015 and 2018. They are distributed in the northwest and southeast of the north and south mountains. Under different environmental factors, the soil erosion modulus first increased and then decreased with the increase of altitude; the soil erosion modulus increased with the increase of slope; the average soil erosion modulus of grassland and woodland was larger, and the average soil erosion modulus of water area was the smallest; except for bare land, the average soil erosion modulus decreased with the increase of vegetation coverage. The soil erosion modulus in the greening range is lower than that outside the greening scope, mainly the result of the joint influence of precipitation, soil and vegetation.


Sign in / Sign up

Export Citation Format

Share Document