scholarly journals Manometric Tubular Springs Oscillatory Processes Modeling with Consideration of its Viscoelastic Properties

2021 ◽  
Vol 264 ◽  
pp. 01010
Author(s):  
Ismoil Safarov ◽  
Мuhsin Теshaev ◽  
Sharifboy Axmedov ◽  
Doniyor Rayimov ◽  
Farhod Homidov

This article is dedicated to the operation and management of systems of machine-building and aviation enterprises, systems of production, transport, storage of oil and gas, issues of control of technological processes are of great importance. Control of technological processes is carried out by monitoring the pressure and other parameters. These measuring instruments must have high reliability and the necessary accuracy. In this connection, there is a sharp increase in interest in determining the dynamic parameters of the elements of measuring devices. The main elements of such devices are monomeric tubular springs (Bourdon tubes). The paper considers the natural and forced steady-state oscillations of a thin curved rod interacting with a liquid. Based on the principle of possible displacements, a resolving system of partial differential equations and the corresponding boundary conditions are obtained. The problem is solved numerically by the Godunov orthogonal run method, and the Muller method and the Eigen frequencies found are compared with the experimental results. As a result, for a given axial perturbation, it was possible to select such an effect, in the orthogonal direction, that the amplitude of the longitudinal vibrations of the rod at the first resonance decreased by 20 times. The described vibration damping effect is due to the interrelation of transverse and longitudinal vibrations and is fundamentally impossible in the case of a straight rod.

2020 ◽  
Vol 72 (12) ◽  
pp. 34-37
Author(s):  
Demetra V. Collia ◽  
Roland L. Moreau

Introduction In the aftermath of the Deepwater Horizon oil spill, the oil and gas industry, regulators, and other stakeholders recognized the need for increased collaboration and data sharing to augment their ability to better identify safety risks and address them before an accident occurs. The SafeOCS program is one such collaboration between industry and government. It is a voluntary confidential reporting program that collects and analyzes data to advance safety in oil and gas operations on the Outer Continental Shelf (OCS). The US Bureau of Safety and Environmental Enforcement (BSEE) established the program with input from industry and then entered into an agreement with the US Bureau of Transportation Statistics (BTS) to develop, implement, and operate the program. As a principal statistical agency, BTS has considerable data-collection-and-analysis expertise with near-miss reporting systems for other industries and the statutory authority to protect the confidentiality of the reported information and the reporter’s identify. Source data submitted to BTS are not subject to subpoena, legal discovery, or Freedom of Information Act (FOIA) requests. Solving for the Gap Across industries, companies have long realized the benefits of collecting and analyzing data around safety and environmental events to identify risks and take actions to prevent reoccurrence. These activities are aided by industry associations that collect and share event information and develop recommended practices to improve performance. In high-reliability industries such as aviation and nuclear, it is common practice to report and share events among companies and for the regulators to identify hidden trends and create or update existing recommended practices, regulations, or other controls. The challenge for the offshore oil and gas industry is that industry associations and the regulator are typically limited to collecting data on agency-reportable incidents. With this limitation, other high-learning-value events or observed conditions could go unnoticed as a trend until a major event occurs. This lack of timely data represented an opportunity for the industry and the offshore regulator (BSEE) to collaborate on a means of gathering safety-event data that would allow for analysis and identification of trends, thereby enabling appropriate interventions to prevent major incidents and foster continuous improvement. The SafeOCS Industry Safety Data (ISD) program provides an effective process for capturing these trends by looking across a wider spectrum of events, including those with no consequences.


Author(s):  
Amitabh Kumar ◽  
Brian McShane ◽  
Mark McQueen

A large Oil and Gas pipeline gathering system is commonly used to transport processed oil and gas from an offshore platform to an onshore receiving facility. High reliability and integrity for continuous operation of these systems is crucial to ensure constant supply of hydrocarbon to the onshore processing facility and eventually to market. When such a system is exposed to a series of complex environmental loadings, it is often difficult to predict the response path, in-situ condition and therefore the system’s ability to withstand subsequent future loading scenarios. In order to continue to operate the pipeline after a significant environmental event, an overall approach needs to be developed to — (a) Understand the system loading and the associated integrity, (b) Develop a series of criteria staging the sequence of actions following an event that will verify the pipeline integrity and (c) Ensure that the integrity management solution is simple and easy to understand so that it can be implemented consistently. For a complex loading scenario, one of the main challenges is the ability to predict the controlling parameter(s) that drives the global integrity of these systems. In such scenarios, the presence of numerous parameters makes the technical modeling and prediction tasks arduous. To address such scenarios, first and foremost, it is crucial to understand the baseline environment data and other associated critical design input elements. If the “design environmental baseline” has transformed (due to large events e.g. storms etc.) from its original condition; it modifies the dynamics of the system. To address this problem, a thorough modeling and assessment of the in-situ condition is essential. Further, a robust calibration method is required to predict the future response path and therefore expected pipeline condition. The study further compares the planned integrity management solutions to the field data to validate the efficiency of the predicted scenarios. By the inclusion of real field-data feedback to the modeling method, balanced integrity solutions can be achieved and the ability to quantify the risks is made more practical and actionable.


2018 ◽  
Vol 2 (1) ◽  
pp. 57-73
Author(s):  
Immanuel Yosua ◽  
Desty Lovina ◽  
Dessy Eka Purnama ◽  
Benedicta P. Dwi Riyanti ◽  
Magdalena S. Halim

This study aimed to adapt the measurement of Interest in Research developed by Bishop Bieschke (1998). This development is necessary to map the potential of lecturers in research interest. This further will be useful for the development of programs or policies that facilitate the increasing of lecturer interest towards research. The measurement tools that have been adapted here, comprising Research Self-Efficacy and Interest in Research. Based on previous finding, these two were more significant in predicting Research Productivity (Bieschke, Herbert, Bard, 1998). The development of these measurements was analyzed by the construct validity testing, criterion-based validity testing, and reliability testing. The result of the construct validity testing of the Research Self-Efficacy by using Explanatory Factor Analysis (EFA) has exhibited three dimensions namely: Research Implementation, Research Planning, and Research Teamwork. The result of criterion-based validity testing has indicated a significant positive correlation between Research Self-Efficacy and Research Productivity (r) = .321, p.01) and between Interest in Research and Research Productivity (r) = .229, p.01). Whilst the result of reliability testing has indicated that both measuring instruments have high reliability, that is equal to .981 for Research Self-Efficacy, and .953 for Interest in Research.


2021 ◽  
Vol 05 (01) ◽  
pp. 04-10
Author(s):  
Sabir Babaev ◽  
Ibrahim Habibov ◽  
Zohra Abiyeva

Prospects for the further development of the oil and gas industry are mainly associated with the development and commissioning of high-rate fields. In this regard, the production of more economical and durable equipment by machine-building enterprises, an increase in the level of its reliability and competitiveness, as well as further improvement of technological production processes, is of paramount importance. The evolution of technology in a broad sense is a representation of changes in designs, manufacturing technology, their direction and patterns. In this case, a certain state of any class of TC is considered as a result of long-term changes in its previous state; transition from existing and applied in practice vehicles to new models that differ from previous designs. These transitions, as a rule, are associated with the improvement of any performance criteria or quality indicators of the vehicle and are progressive in nature. The work is devoted to the study of the evolution of the quality of high-pressure valves during the period of their intensive development. Keywords: technical system, evolution of technology, high-pressure valves, shut-off devices, gate.


Author(s):  

The investigation results of the applied simulation modeling programs market from the point of view of the usage possibility and expediency at the development or optimization of technological processes on domestic machinebuilding enterprises are presented. The analysis of the technological processes features in machine-building, and in particular aircraft construction, at domestic enterprises is carried out. The production features of the metalconsuming products and semi-finished products from the point of view these processes simulation expediency are considered. The expediency of carrying out simulation modeling of machine-building production, which provides adequate analysis results at minimal costs in comparison with other modeling methods are shown. The main criteria for choosing of specific simulation software are given. Keywords mechanical engineering technologies; metal-intensive production; aircraft construction; deformation processing of metals and alloys; foundry; equipment productivity; optimal stocks of semi-finished products; insurance stocks; simulation modeling; visualiz


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000075-000081
Author(s):  
Ramesh Khanna ◽  
Srinivasan Venkataraman

Harsh Environment approved components/ designs require high reliability as well as availability of power to meet their system needs. The paper will explore the various design constrains imposed on the high temperature designs. Down hole oil and gas industry requires high reliability components that can withstand high temperature. Discrete component selection, packaging and constrains imposed by various specification requirements to meet harsh environment approval are critical aspect of high-temp designs. High temperature PCB material, PCB layout techniques, trace characteristics are an important aspect of high-temperature PCB design and will be explored in the article. Buck Converters are the basic building blocks, but in order to meet system requirements to power FPGA's where low output voltage and high currents are required. Converter must be able to provide wider step down ratios with high transient response so buck converters are used. The paper with explore the various features of a buck-based POL converter design. Low noise forces the need for Low-dropout (LDO) Regulators that can operate at high Temperatures up to 210°C. This paper will address the power requirements to meet system needs.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000018-000022
Author(s):  
Erick M. Spory

Abstract Semiconductor parts are most often specified for use in the “commercial” 0 to 70°C and, to a lesser extent, in the “industrial” −40 to 85°C operating temperature range. These operating temperature ratings generally satisfy the demands of the dominant semiconductor customers in the computer, telecommunications, and consumer electronic industries. There is also a demand for parts rated beyond the “industrial” temperature range, primarily from the aerospace, military, oil and gas exploration, and automotive industries (−55 to +125C, and even higher). However, the demand has not been large enough to attract or retain the interest of major semiconductor part manufacturers to make these parts. In fact, wide temperature range parts are becoming obsolete and functionally equivalent parts are not replacing them. Today, for some applications, it is difficult to procure parts that meet engineering, economic, logistical, and technical integration requirements of product manufacturers, and that are rated for an extended temperature range (typically beyond 0 to 70°C). In some applications, the product is available only in the “commercial” temperature range, with commercial packaging. If the product application environment is outside the commercial range, steps must be taken to address this apparent incompatibility. For example, oil exploration and drilling applications require small, advanced communication electronics to work underground at high temperatures where cooling is not possible. This is where uprating comes into play. Despite the fact that a part can be uprated relative to functional performance at higher than specified temperatures, the original packaging and connectivity may not be reliable with long term exposure to greater than 150C due to Kirkendall voiding and general plastic degradation. However, if the original die with gold wire and aluminum pad bond is extracted from the original plastic commercial package and reassembled into a new ceramic package body, excellent reliability at temperatures exceeding 200C can be achieved. The original gold/aluminum bond interface can be removed and replaced with an electroless nickel, electroless palladium, immersion gold (ENEPIG) process, or a much more economical, automated process can be used. This process is discussed in the accompanying paper and utilizes additive manufacturing to place an aerosol jet silver deposition over the existing gold ball, interfacing with the remaining exposed aluminum. In this manner, a high-reliability connection system can be achieved which is immune to Kirkendall voiding for the temperature range of interest.


2019 ◽  
Vol 24 (3) ◽  
pp. 127-133
Author(s):  
Oren Guttman ◽  
Joseph R Keebler ◽  
Elizabeth H Lazzara ◽  
William Daniel ◽  
Gary Reed

US Healthcare, despite its exceptional technology and innovative treatments, is still unsafe and unreliable. It is estimated that medical errors account for an estimated 254,000 inpatient deaths a year and hold the distinction as the third leading cause of death in the US. Despite an aggressive national campaign set by organizations like the National Academy of Medicine, the Institute for Healthcare Improvement, the National Patient Safety Foundation, and the National Quality Forum, efforts to improve the quality and safety of US Healthcare have been unsuccessful, or at best, unsustainable at eliminating preventable patient harm. Historically, US Healthcare has turned to commercial aviation, nuclear energy, oil and gas, and other high reliability industries for lessons on how to avoid harm. In this paper, we join two pre-existing conceptual models: high reliability organizing and error management theory to propose a strategy for embedding and sustaining a preoccupation with failure and commitment to resilience within healthcare to advance a practical and disciplined focus to advance organizational high reliability.


Sign in / Sign up

Export Citation Format

Share Document