Integrity Assurance of an Oil Transportation Pipeline in a Transformed Design Environment

Author(s):  
Amitabh Kumar ◽  
Brian McShane ◽  
Mark McQueen

A large Oil and Gas pipeline gathering system is commonly used to transport processed oil and gas from an offshore platform to an onshore receiving facility. High reliability and integrity for continuous operation of these systems is crucial to ensure constant supply of hydrocarbon to the onshore processing facility and eventually to market. When such a system is exposed to a series of complex environmental loadings, it is often difficult to predict the response path, in-situ condition and therefore the system’s ability to withstand subsequent future loading scenarios. In order to continue to operate the pipeline after a significant environmental event, an overall approach needs to be developed to — (a) Understand the system loading and the associated integrity, (b) Develop a series of criteria staging the sequence of actions following an event that will verify the pipeline integrity and (c) Ensure that the integrity management solution is simple and easy to understand so that it can be implemented consistently. For a complex loading scenario, one of the main challenges is the ability to predict the controlling parameter(s) that drives the global integrity of these systems. In such scenarios, the presence of numerous parameters makes the technical modeling and prediction tasks arduous. To address such scenarios, first and foremost, it is crucial to understand the baseline environment data and other associated critical design input elements. If the “design environmental baseline” has transformed (due to large events e.g. storms etc.) from its original condition; it modifies the dynamics of the system. To address this problem, a thorough modeling and assessment of the in-situ condition is essential. Further, a robust calibration method is required to predict the future response path and therefore expected pipeline condition. The study further compares the planned integrity management solutions to the field data to validate the efficiency of the predicted scenarios. By the inclusion of real field-data feedback to the modeling method, balanced integrity solutions can be achieved and the ability to quantify the risks is made more practical and actionable.

2020 ◽  
Vol 8 (4) ◽  
pp. SP135-SP156
Author(s):  
Heloise Lynn

The azimuthal (az’l) processing of 3D full-azimuth full-offset P-P reflection seismic data can enable better imaging, thus yielding improved estimates of structure, lithology, porosity, pore fluids, in situ stress, and aligned porosity that flows fluids (macrofracture porosity). In the past 34 years, the oil and gas industry has significantly advanced in the use of seismic azimuthal anisotropy, in particular, to gain information concerning unequal horizontal stresses and/or vertically aligned fractures, and possibly more importantly, to improve the prestack imaging especially in complex structure. The important development stages during the past 40 years were enabled by industry advancements in acquisition, processing, theory, and interpretation. The typical important techniques became evident in PP amplitude variation with angle and azimuth (AVAaz) and orthorhombic imaging. These techniques addressed the complications due to wave propagation in birefringent media. PP AVAaz, now industry standard for vertically aligned fracture characterization, is accompanied by a near-angle azimuthal amplitude variation when aligned connected porosity that flows fluids is present. Birefringence is present with unequal horizontal stresses and/or vertically aligned fractures that flow fluids. I have focused on the field-data documentation of the relationships among azimuthal P-P reflection data, S-wave birefringence, and hydrocarbon production. With increases and improvements in acquisition and processing, plus today’s powerful versatile interpretation platforms, continual advances beyond orthorhombic (ORT) into monoclinic and triclinic symmetries are to be expected. The use of 3D azimuthal seismic for time-lapse changes of the in situ stress field, fracture populations, and pore fluids, as rocks undergo production processes (oil and gas reservoir production processes, wastewater disposal, etc.) and at plate boundaries where stresses change, offers great potential to benefit not just the oil and gas industry but all of humanity.


2009 ◽  
Vol 180 (5) ◽  
pp. 387-397 ◽  
Author(s):  
Catherine Ponsot-Jacquin ◽  
Frédéric Roggero ◽  
Guillaume Enchery

Abstract The facies-proportion calibration method is a new history-matching technique, which modifies facies proportions within a fine geological – geostatistical model until a good match of the field data is reached. The initial facies proportions in the model are usually locally constrained by well data, for example, but their spatial tendencies may be unreliable in some parts of the reservoir. The algorithm presented in this paper introduces average proportion ratios between facies groups in order to calculate new facies proportions while taking into account their initial values. It can be applied locally on specific regions or globally on the whole reservoir for stationary or non-stationary facies distributions. The proportion ratios can be manually adjusted or iteratively computed through an optimization process. The method has been successfully applied to a real field case.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 251
Author(s):  
Liqin Ding ◽  
Zhiqiao Wang ◽  
Jianguo Lv ◽  
Yu Wang ◽  
Baolin Liu

Severe wellbore stability issues were reported while drilling in laminated formation with weak planes such as beddings. To accurately determine the safe mud weight according to the changing environment is of primary importance for safety control of drilling. Considering both the elastic and strength anisotropy of bedding formation, a novel theoretical model is established and the stress and failure around wellbores are analyzed. The accuracy and applicability of the theoretical model is verified by in situ field data. For the purpose of fulfilling real-time prediction, the method flowchart of programming is also provided. The results show that the model built can be conveniently used to predict the stress distribution, failure area, and collapse and fracture pressure while drilling, and rather good predictions can be made compared to real field data. In addition, the inhomogeneity of in situ stress and elastic parameters affect the upper limit of the safe mud weight window (SMWW) greater than the lower limit. Negative SMWW may appear with the direction change of the wellbore or weak plane, especially when the azimuths of them change. As to the magnitude of SMWW, the anisotropic effects of Young’s modulus are greater than the Poisson’s ratio. The method established in this paper can greatly help with the precise prediction of wellbore stability as drilling proceeds in bedding formation.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.


Fuels ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 286-303
Author(s):  
Vuong Van Pham ◽  
Ebrahim Fathi ◽  
Fatemeh Belyadi

The success of machine learning (ML) techniques implemented in different industries heavily rely on operator expertise and domain knowledge, which is used in manually choosing an algorithm and setting up the specific algorithm parameters for a problem. Due to the manual nature of model selection and parameter tuning, it is impossible to quantify or evaluate the quality of this manual process, which in turn limits the ability to perform comparison studies between different algorithms. In this study, we propose a new hybrid approach for developing machine learning workflows to help automated algorithm selection and hyperparameter optimization. The proposed approach provides a robust, reproducible, and unbiased workflow that can be quantified and validated using different scoring metrics. We have used the most common workflows implemented in the application of artificial intelligence (AI) and ML in engineering problems including grid/random search, Bayesian search and optimization, genetic programming, and compared that with our new hybrid approach that includes the integration of Tree-based Pipeline Optimization Tool (TPOT) and Bayesian optimization. The performance of each workflow is quantified using different scoring metrics such as Pearson correlation (i.e., R2 correlation) and Mean Square Error (i.e., MSE). For this purpose, actual field data obtained from 1567 gas wells in Marcellus Shale, with 121 features from reservoir, drilling, completion, stimulation, and operation is tested using different proposed workflows. A proposed new hybrid workflow is then used to evaluate the type well used for evaluation of Marcellus shale gas production. In conclusion, our automated hybrid approach showed significant improvement in comparison to other proposed workflows using both scoring matrices. The new hybrid approach provides a practical tool that supports the automated model and hyperparameter selection, which is tested using real field data that can be implemented in solving different engineering problems using artificial intelligence and machine learning. The new hybrid model is tested in a real field and compared with conventional type wells developed by field engineers. It is found that the type well of the field is very close to P50 predictions of the field, which shows great success in the completion design of the field performed by field engineers. It also shows that the field average production could have been improved by 8% if shorter cluster spacing and higher proppant loading per cluster were used during the frac jobs.


2021 ◽  
Vol 11 (11) ◽  
pp. 5025
Author(s):  
David González-Peña ◽  
Ignacio García-Ruiz ◽  
Montserrat Díez-Mediavilla ◽  
Mª. Isabel Dieste-Velasco ◽  
Cristina Alonso-Tristán

Prediction of energy production is crucial for the design and installation of PV plants. In this study, five free and commercial software tools to predict photovoltaic energy production are evaluated: RETScreen, Solar Advisor Model (SAM), PVGIS, PVSyst, and PV*SOL. The evaluation involves a comparison of monthly and annually predicted data on energy supplied to the national grid with real field data collected from three real PV plants. All the systems, located in Castile and Leon (Spain), have three different tilting systems: fixed mounting, horizontal-axis tracking, and dual-axis tracking. The last 12 years of operating data, from 2008 to 2020, are used in the evaluation. Although the commercial software tools were easier to use and their installations could be described in detail, their results were not appreciably superior. In annual global terms, the results hid poor estimations throughout the year, where overestimations were compensated by underestimated results. This fact was reflected in the monthly results: the software yielded overestimates during the colder months, while the models showed better estimates during the warmer months. In most studies, the deviation was below 10% when the annual results were analyzed. The accuracy of the software was also reduced when the complexity of the dual-axis solar tracking systems replaced the fixed installation.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 385
Author(s):  
Qiao Wang ◽  
Donglin Zhang ◽  
Yulin Zhao ◽  
Chao Liu ◽  
Qiao Hu ◽  
...  

Ferroelectric capacitors (FeCAPs) with high process compatibility, high reliability, ultra-low programming current and fast operation speed are promising candidates to traditional volatile and nonvolatile memory. In addition, they have great potential in the fields of storage, computing, and memory logic. Nevertheless, effective methods to realize logic and memory in FeCAP devices are still lacking. This study proposes a 1T2C FeCAP-based in situ bitwise X(N)OR logic based on a charge-sharing function. First, using the 1T2C structure and a two-step write-back circuit, the nondestructive reading is realized with less complexity than the previous work. Second, a method of two-line activation is used during the operation of X(N)OR. The verification results show that the speed, area and power consumption of the proposed 1T2C FeCAP-based bitwise logic operations are significantly improved.


2009 ◽  
Vol 19 ◽  
pp. s243-s249 ◽  
Author(s):  
Jun-Hyub PARK ◽  
Dong-Joong KANG ◽  
Myung-Soo SHIN ◽  
Sung-Jo LIM ◽  
Son-Cheol YU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document