scholarly journals Physicochemical method of fixing mobile sands with local materials

2021 ◽  
Vol 264 ◽  
pp. 02009
Author(s):  
Mauzhuda Muzaffarova ◽  
Makhamadzhon Mirakhmedov

Impregnating composition with water-soluble binders has been elaborated, with the help of which the source of deflation of mobile sands is blocked, and the protective crust obtained on the sandy surface is characterized by resistance to the effects of wind-sand flow, assessed by plastic strength and thickness. The free-flow movement of a binder in a porous body of sand depends mainly on the equivalent diameter of the particles obtained by the joint solution of the internal and external problems of hydrodynamics and the shape factor of the particles. To interpret the experimental results empirically, an indicator of the saturation of the protective crust sand characterizing the impregnation as an unstable process proceeding under the predominant influence of the gravity field with an uneven movement of the liquid front was revealed. The prevalence of the elastic-plastic properties of the protective crust is evidenced by a slight and smooth change in physical and mechanical indicators over time by the third year of operation.

2021 ◽  
Vol 36 (1) ◽  
pp. 356-361
Author(s):  
A.I. Sharipova ◽  
I.L. Akhmadjоnov ◽  
A.B. Аbdikamalova ◽  
Kh.I. Akbarov ◽  
Sh.A. Kuldasheva

The issues of the synthesis of a water-soluble polymer preparation, which can find application in agriculture as a structure-forming agent of soils and mobile sands to prevent water, wind, mechanical erosion, increase fertility, moisture absorption, moisture retention, consolidation of soils, dumps, and mobile sands to eliminate negative effects on the environment. Maleic acid and acrylamide were chosen as monomers for the copolymerization reaction, and potassium persulfate was chosen as the initiator. As it turned out, an increase in the concentration of the initiator from 0.01 to 0.05% (by weight of monomers) promotes an increase in the rate of the polymerization process, maintaining its value for a longer time, reducing the time of this process from 7.0-6.5 to 5, 5-6 hours. In this case, the yield of the polymerization reaction increased exactly from 81.2 to 96.0% for the reaction with the ratio of starting materials 1: 5. When a small amount of alkali is introduced into the reaction mixture, high molecular weight polymers can be obtained. In this case, the yield of the process increases, and the reaction time is reduced by 2-3 hours. Analysis of the kinetics of fixing processes using synthesized and various other reagents, as well as changes in the plastic strength of sands, showed the dependence of the conditions of penetration of the fixer with the formation of a free flow in space under the influence of gravitational or capillary forces on the type of binding agent and on the composition of the sand itself.


2003 ◽  
Vol 3 (5) ◽  
pp. 4755-4832 ◽  
Author(s):  
E. Mikhailov ◽  
S. Vlasenko ◽  
R. Niessner ◽  
U. Pöschl

Abstract. The interaction of aerosol particles in the 100–200 nm size range composed of the protein bovine serum albumin (BSA) and the inorganic salts sodium chloride and ammonium nitrate with water vapor at ambient temperature and pressure (25°C, 1 atm) has been investigated by hygroscopicity tandem differential mobility analyzer (H-TDMA) experiments complemented by transmission electron microscopy (TEM) and Köhler theory calculations. BSA was chosen as a well-defined model substance for proteins and other macromolecular compounds, which constitute a large fraction of the water-soluble organic component of air particulate matter. Pure BSA particles exhibited deliquescence and efflorescence transitions at ~35% relative humidity (RH) and a hygroscopic diameter increase by up to ~10% at 95% RH in good agreement with model calculations based on a simple parameterisation of the osmotic coefficient. Pure NaCl particles were converted from near-cubic to near-spherical or polyhedral shape upon interaction with water vapor at relative humidities below the deliquescence threshold (partial surface dissolution and recrystallisation), and the diameters of pure NH4NO3 particles decreased by up to 10% due to chemical decomposition and evaporation. Mixed NaCl-BSA and NH4NO3-BSA particles interacting with water vapor exhibited mobility equivalent diameter reductions of up to 20%, depending on particle generation, conditioning, size, and chemical composition (BSA dry mass fraction 10–90%). These observations can be explained by formation of porous agglomerates (envelope void fractions up to 50%) due to ion-protein interactions and electric charge effects on the one hand, and by compaction of the agglomerate structure due to capillary condensation effects on the other. The size of NH4NO3-BSA particles was apparently also influenced by volatilisation of NH4NO3, but not as much as for pure salt particles, i.e. the protein inhibited the decomposition of NH4NO3 or the evaporation of the decomposition products NH3 and HNO3. The efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets. The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. Besides these surface and kinetic effects, proteins and comparable organic macromolecules may also influence the thermodynamic properties of the aqueous bulk solution (solubilities, vapor pressures, and chemical equilibria, e.g. for the decomposition and evaporation of NH4NO3. The observed effects should be taken into account in the analysis of data from laboratory experiments and field measurements and in the modelling of aerosol processes involving water vapor and particles with complex composition. They can strongly influence experimental results, and depending on ambient conditions they may also play a significant role in the atmosphere (deliquescence, efflorescence, and CCN activation of particles). In fact, irregular hygroscopic growth curves similar to the ones observed in this study have recently been reported from H-TDMA experiments with water-soluble organics extracted from real air particulate matter and with humic-like substances. The Köhler theory calculations performed with different models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct dry solute mass equivalent diameter and composition are known. A simple parameterisation of the osmotic coefficient has been derived from an osmotic pressure virial equation and appears to be well-suited for proteins and comparable substances. It is fully compatible with traditional volume additivity models for salt mixtures, and for its application only the density and molar mass of the substance have to be known or estimated.


Author(s):  
Mark R Fresquez ◽  
Clifford H Watson ◽  
Liza Valentin-Blasini ◽  
R Steven Pappas

Abstract The most commonly observed forms of aluminum, silicon and titanium in tobacco products are aluminum silicates (e.g., kaolin), silica and titanium(IV) oxide. These compounds are neither water soluble nor volatile at cigarette combustion temperatures. Rather, they are transported in mainstream tobacco smoke as particles after being freed by combustion from the tobacco filler and can induce pulmonary inflammation when inhaled. Aluminum silicate particles are the most frequently observed particles in the pulmonary macrophages of smokers and have become known as ‘smokers’ inclusions’. A relatively new technique, single particle triple quadrupole inductively coupled plasma-mass spectrometry was used to analyze aluminum-, silicon- and titanium-containing particle deliveries in cigarette and little cigar mainstream tobacco smoke, and to collect information on solid inorganic particles. The mass concentration of aluminum-containing particles transmitted in mainstream smoke was low (0.89–0.56 ng/cigarette), which was not surprising because aluminum silicates are not volatile. Although the collective masses (ng/cigarette) of aluminum-, silicon- and titanium-containing particles under 100 nm diameter transported in mainstream smoke were low, an abundance of ‘ultrafine’ particles (particles < 100 nm or nanoparticles) was observed. Limitations of the particle background equivalent diameter (the smallest detectable particle size (MassHunter 4.5 Software) due to the environmentally ubiquitous silicon background restricted the determination of silica nanoparticles, but silica particles slightly below 200 nm diameter were consistently detected. Aluminum- and titanium-containing nanoparticles were observed in all cigarette and little cigar samples, with titanium(IV) oxide particle deliveries consistently fewer in number and smaller in diameter than the other two types of particles. The highest concentrations of aluminum-containing particles (as kaolin) were in the nanoparticle range with much lower concentrations extending to the larger particle sizes (>100 nm). The number and range of particle sizes determined in mainstream smoke is consistent with pulmonary deposition of aluminum silicates described by other researchers as contributing to the ‘smokers’ inclusions’ observed in pulmonary macrophages.


2019 ◽  
Vol 49 (2) ◽  
pp. 320-329 ◽  
Author(s):  
Александр Табаторович ◽  
Alexander Tabatorovich ◽  
Ирина Резниченко ◽  
Irina Reznichenko

Complex diet therapy for type II diabetes involves confectionery products based on fructose, sugar substitutes, and/or intensive sweeteners. The formulation of diabetic jelly marmalade ‘Karkade’ does not contain sugar or molasses. Sweetness was provided by the combination of sorbitol (E420) and glycosyl stevioside ‘Crystal’. Their sweetness to sucrose ratio was 0.6 and 150, respectively. Polydextrose was used as a filler. Polydextrose is a low-calorie prebiotic (1 kcal/g) and a water-soluble dietary fiber with a neutral taste. Water infusion of dry bracts of hibiscus (Hibiscus Sabdariffa L.), or Karkade, gave the marmalade its color and physiologically active substances. Fortification was provided by succinic acid, which was chosen as an acidity regulator since it increases cell insulin resistance and reduces the risk of diabetic complications. For maximum extraction of anthocyanins, the raw material was infused for 30 minutes at a ratio of 1:10 at 80°C. Citric acid (1.2 g/100 g) was added into the infusion to stabilize the anthocyanins. The research involved standard methods. The method of pH-differential spectrophotometry was used to determine the level of anthocyanins, while the method of gas-liquid chromatography was employed to determine organic acids in the marmalade. The optimal ratio of agar, stevioside, and hibiscus infusion (%) was defined as 16.0:0.4:15.0. No preservative was used. The marmalade contained 380 g/kg of sorbitol and 2 g/kg of succinic acid. The sensory properties of the marmalade corresponded with the State Standard. The marmalade had a slightly astringent sweet and sour taste, a burgundy color, and a jelly-like consistency with no syneresis. The average value of physical and chemical parameters at the time of manufacture was as follows: moisture – 18.7%, total acidity – 12.4 degrees, plastic strength – 22.0 kPa. The average content of micronutrients (mg/100 g) was as follows: anthocyanins – 38.8, potassium – 33.1, calcium – 11.3, magnesium – 5.1, manganese – 0.48, iron – 0.35, zinc – 0.0015, and succinic acid – 214.0. No loss of succinic acid was registered during processing and 3 months of storage. The content of succinic acid in 50 g marmalade was amounted to about 100g, or 50% of the acceptable daily intake. Thus, marmalade 'Karkade' with succinic acid can be considered a functional fortified product for diabetic diet.


1979 ◽  
Vol 44 ◽  
pp. 131-134
Author(s):  
A. Raoult ◽  
P. Lantos ◽  
E. Fürst

The depressions at centimetric and millimetric wavelengths associated with the filaments are studied using already published maps as well as unpublished observations from the Effelsberg 100 m radio telescope of the M.P.I., Bonn. The study has been restricted to large Ha quiescent prominences of relatively simple shape, situated far from the limb and from active regions. The data has been reduced employing one method whose main characteristics are choice of a local quiet sun definition and avoidance of the unstable process of deconvolution.


Author(s):  
J. G. Robertson ◽  
D. F. Parsons

The extraction of lipids from tissues during fixation and embedding for electron microscopy is widely recognized as a source of possible artifact, especially at the membrane level of cell organization. Lipid extraction is also a major disadvantage in electron microscope autoradiography of radioactive lipids, as in studies of the uptake of radioactive fatty acids by intestinal slices. Retention of lipids by fixation with osmium tetroxide is generally limited to glycolipids, phospholipids and highly unsaturated neutral lipids. Saturated neutral lipids and sterols tend to be easily extracted by organic dehydrating reagents prior to embedding. Retention of the more saturated lipids in embedded tissue might be achieved by developing new cross-linking reagents, by the use of highly water soluble embedding materials or by working at very low temperatures.


Author(s):  
J. D. McLean ◽  
S. J. Singer

The successful application of ferritin labeled antibodies (F-A) to ultrathin sections of biological material has been hampered by two main difficulties. Firstly the normally used procedures for the preparation of material for thin sectioning often result in a loss of antigenicity. Secondly the polymers employed for embedding may non-specifically absorb the F-A. Our earlier use of cross-linked polyampholytes as embedding media partially overcame these problems. However the water-soluble monomers used for this method still extract many lipids from the material.


Author(s):  
D.R. Mattie ◽  
J.W. Fisher

Jet fuels such as JP-4 can be introduced into the environment and come in contact with aquatic biota in several ways. Studies in this laboratory have demonstrated JP-4 toxicity to fish. Benzene is the major constituent of the water soluble fraction of JP-4. The normal surface morphology of bluegill olfactory lamellae was examined in conjunction with electrophysiology experiments. There was no information regarding the ultrastructural and physiological responses of the olfactory epithelium of bluegills to acute benzene exposure.The purpose of this investigation was to determine the effects of benzene on the surface morphology of the nasal rosettes of the bluegill sunfish (Lepomis macrochirus). Bluegills were exposed to a sublethal concentration of 7.7±0.2ppm (+S.E.M.) benzene for five, ten or fourteen days. Nasal rosettes were fixed in 2.5% glutaraldehyde and 2.0% paraformaldehyde in 0.1M cacodylate buffer (pH 7.4) containing 1.25mM calcium chloride. Specimens were processed for scanning electron microscopy.


Author(s):  
H. J. Arnott ◽  
M. A. Webb ◽  
L. E. Lopez

Many papers have been published on the structure of calcium oxalate crystals in plants, however, few deal with the early development of crystals. Large numbers of idioblastic calcium oxalate crystal cells are found in the leaves of Vitis mustangensis, V. labrusca and V. vulpina. A crystal idioblast, or raphide cell, will produce 150-300 needle-like calcium oxalate crystals within a central vacuole. Each raphide crystal is autonomous, having been produced in a separate membrane-defined crystal chamber; the idioblast''s crystal complement is collectively embedded in a water soluble glycoprotein matrix which fills the vacuole. The crystals are twins, each having a pointed and a bidentate end (Fig 1); when mature they are about 0.5-1.2 μn in diameter and 30-70 μm in length. Crystal bundles, i.e., crystals and their matrix, can be isolated from leaves using 100% ETOH. If the bundles are treated with H2O the matrix surrounding the crystals rapidly disperses.


Author(s):  
B. J. Grenon ◽  
A. J. Tousimis

Ever since the introduction of glutaraldehyde as a fixative in electron microscopy of biological specimens, the identification of impurities and consequently their effects on biologic ultrastructure have been under investigation. Several reports postulate that the impurities of glutaraldehyde, used as a fixative, are glutaric acid, glutaraldehyde polymer, acrolein and glutaraldoxime.Analysis of commercially available biological or technical grade glutaraldehyde revealed two major impurity components, none of which has been reported. The first compound is a colorless, water-soluble liquid with a boiling point of 42°C at 16 mm. Utilizing Nuclear Magnetic Resonance (NMR) spectroscopic analysis, this compound has been identified to be — dihydro-2-ethoxy 2H-pyran. This impurity component of the glutaraldehyde biological or technical grades has an UV absorption peak at 235nm. The second compound is a white amorphous solid which is insoluble in water and has a melting point of 80-82°C. Initial chemical analysis indicates that this compound is an aldol condensation product(s) of glutaraldehyde.


Sign in / Sign up

Export Citation Format

Share Document