scholarly journals Estimation of the stress state of agricultural harrows with vertical axis rotor, using mathematical models with finite elements

2021 ◽  
Vol 286 ◽  
pp. 03023
Author(s):  
Valentin Cornel Iordache ◽  
Ion Saracin

In this paper we simulated through mathematical models the interaction between the agricultural harrow with vertical rotor (equipped with 4 boxes per rotor) and soil. Due to the large or even very large number of mathematical models that can be developed and can receive a solution using the finite element method, there are also many new possibilities to approach and improve some already developed models. The most important benefits of using finite element modeling are: increasing the quality of projects by checking the resistance, noticing dangerous vibration problems, remedying deficiencies reported in the testing of experimental models or even in operation. Normal optimization aims to reduce material consumption, its own vibration spectrum or other mechanical qualities.By using mathematical methods, a resistance check of the subassemblies of the working member (knife), connected to the action device, is obtained.

1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2013 ◽  
Vol 61 (1) ◽  
pp. 111-121 ◽  
Author(s):  
T. Jankowiak ◽  
T. Łodygowski

Abstract The paper considers the failure study of concrete structures loaded by the pressure wave due to detonation of an explosive material. In the paper two numerical methods are used and their efficiency and accuracy are compared. There are the Smoothed Particle Hydrodynamics (SPH) and the Finite Element Method (FEM). The numerical examples take into account the dynamic behaviour of concrete slab or a structure composed of two concrete slabs subjected to the blast impact coming from one side. The influence of reinforcement in the slab (1, 2 or 3 layers) is also presented and compared with a pure concrete one. The influence of mesh density for FEM and the influence of important parameters in SPH like a smoothing length or a particle distance on the quality of the results are discussed in the paper


2021 ◽  
Vol 11 (14) ◽  
pp. 6317
Author(s):  
Feng Jin ◽  
Hong Xiao ◽  
Mahantesh M Nadakatti ◽  
Huiting Yue ◽  
Wanting Liu

In this study, the rapid growth of corrugation caused by the bad quality of grinding works and their wavelength, depth, and evolution processes are captured through field measurements. The residual grinding marks left by poor grinding quality lead to further crack accumulation and corrugation deterioration by decreasing plastic resistance in rails. In this case, the average peak-to-peak values of corrugation grow extremely fast, reaching 1.4 μm per day. The finite element method (FEM) and fracture mechanics methodologies were used to analyze the development and trends in rail surface crack deterioration by considering rails with and without grinding marks. Crack propagation trends increase with residual grinding marks, and they are more severe in circular curve lines. To avoid the rapid deterioration of rail corrugation, intersections between grinding marks and fatigue cracks should be avoided.


2021 ◽  
Vol 4 (2) ◽  
pp. 001
Author(s):  
Maurizio Ponte ◽  
◽  
Filippo Catanzariti ◽  
Gloria Campilongo

Computational simulation is widely used in companies to perform analysis and improve the quality of products and projects. Most of these analyses are carried out using software that uses the Finite Element Method, which allows to obtain answers to numerous engineering problems. In this study, two examples of application to the study of tunnels of the Finite Element Method using the Geostru Software "GFAS - Geotechnical F.E.M. Analysis System" are proposed. The case of a tunnel excavated inside a granite rock massif was analyzed, first determining the state of stresses in the cavity contour through a theoretical method and comparing these results with those obtained in the software. Then, by means of finite element modeling, the settlements induced by the excavation were determined. Finally, the problem of tunnel excavation in a viscoplastic rock mass is presented and the authors propose a comparison of the analytical and numerical method.


2018 ◽  
Vol 284 ◽  
pp. 380-385 ◽  
Author(s):  
Anton I. Golodnov ◽  
Yu.N. Loginov ◽  
Stepan I. Stepanov

The problem of medical implants honeycomb structures loading has been stated. The problem was solved using simulation by the finite element method. Simulation revealed that it is possible to change the elastic modulus of the material more than three times with respect to the bulk titanium alloy. The quality of the simulation was estimated based on the convergence of the simulation data.


2014 ◽  
Vol 1061-1062 ◽  
pp. 421-426 ◽  
Author(s):  
Panupich Kheunkhieo ◽  
Kiatfa Tangchaichit

The purposes of this research are to explore the baseplate and actuator arm deformation which effect to the gram load which occur in the ball swaging process, the main component determining quality of assembly the head stack assembly with the actuator arm. By shooting a ball though the base plate, the component located on the head stack assembly, the base plate plastic deformation takes place and it in expand in radial direction. The base plate then adjoins with the actuator arm. Using the finite element method to reproduce the ball swaging process, we repeated to study effect of the swage press clamp and velocity. The study done by creating the three dimensionals finite element model to analyze and explain characteristics of the baseplate and actuator arm deformation which effect to gram load which effect to the ball swaging process.


Geophysics ◽  
1978 ◽  
Vol 43 (3) ◽  
pp. 550-562 ◽  
Author(s):  
H. M. Bibby

The finite element method is used to determine numerically the apparent resistivity anomaly caused by the presence of any body with a vertical axis of symmetry embedded in a uniform half‐space. The potential for a point source of current, and hence the apparent resistivity, is determined in the form of a Fourier series. The use of the finite element method enables certain classes of resistivity anisotropy to be modeled. Several examples of bipole‐dipole apparent resistivity enable us to examine assumptions that are necessarily made when inhomogeneities are approximated by models for which explicit solutions exist for the potential. An application to the Broadlands geothermal field suggests that the horizontal cross‐sectional area of the geothermal reservoir increases with depth, consistent with a decrease in the permeability with depth.


Author(s):  
Kiran H. Shivanna ◽  
Srinivas C. Tadepalli ◽  
Vincent A. Magnotta ◽  
Nicole M. Grosland

The finite element method (FEM) is an invaluable tool in the numerical simulation of biological processes. FEM entails discretization of the structure of interest into elements. This discretization process is termed finite element meshing. The validity of the solution obtained is highly dependent on the quality of the mesh used. Mesh quality can decrease with increased complexity of the structure of interest, as is often evident when meshing biologic structures. This necessitated the development/implementation of generalized mesh quality improvement algorithms.


2016 ◽  
Vol 61 (2) ◽  
pp. 671-676
Author(s):  
Н. Dyja ◽  
А.А. Тukibay ◽  
S.A. Mashekov

Abstract To create a rational technology of cogging process and to determinate the optimal values of the angles of tilt and single reduction the stress-strain state (SSS) of the blank during cogging in the flat dies was analyzed. By using the finite element method and program MSC.SuperForge quantitative data are obtained and the basic patterns of distribution of SSS, the temperature during the simulation of tilting in flat dies with different angles of tilting and the amount of reduction were established. Sustainable experimental-industrial technology of forging of two-phase titanium alloys was developed and tested.


Sign in / Sign up

Export Citation Format

Share Document