scholarly journals Analysis of ground thermal potential reduction and thermal interaction between boreholes during operation of ground source heat pump in Moscow city environments

2021 ◽  
Vol 289 ◽  
pp. 02006
Author(s):  
Elizaveta Tyabut ◽  
Ivan Sokolov ◽  
Artem Ryzhenkov

Geothermal energy is a renewable energy resource. Nowadays it can be considered as a promising alternative to various fossil fuels. Ground source heat pumps are efficient installations enabling the intensive use of underground energy for heating and cooling of modern residential and commercial buildings. However, climatic conditions often limit the use of this type of installation to a certain extent. This paper presents a description of an existing system comprising a liquid-toliquid heat pump and a geothermal field consisting of 4 boreholes. The system is used to investigate the intensity of ground temperature potential decrease in winter and its recovery in summer in the Moscow city environment with a detailed study of the properties of individual soil layers, as well as to study the mutual influence of boreholes on each other, represented by the conditional radius of thermal influence of individual boreholes. Graphs of soil temperature changes at different depths are presented.

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2496 ◽  
Author(s):  
Laura Carnieletto ◽  
Borja Badenes ◽  
Marco Belliardi ◽  
Adriana Bernardi ◽  
Samantha Graci ◽  
...  

The design of ground source heat pumps is a fundamental step to ensure the high energy efficiency of heat pump systems throughout their operating years. To enhance the diffusion of ground source heat pump systems, two different tools are developed in the H2020 research project named, “Cheap GSHPs”: A design tool and a decision support system. In both cases, the energy demand of the buildings may not be calculated by the user. The main input data, to evaluate the size of the borehole heat exchangers, is the building energy demand. This paper presents a methodology to correlate energy demand, building typologies, and climatic conditions for different types of residential buildings. Rather than envelope properties, three insulation levels have been considered in different climatic conditions to set up a database of energy profiles. Analyzing European climatic test reference years, 23 locations have been considered. For each location, the overall energy and the mean hourly monthly energy profiles for heating and cooling have been calculated. Pre-calculated profiles are needed to size generation systems and, in particular, ground source heat pumps. For this reason, correlations based on the degree days for heating and cooling demand have been found in order to generalize the results for different buildings. These correlations depend on the Köppen–Geiger climate scale.


2018 ◽  
Vol 10 (10) ◽  
pp. 3483 ◽  
Author(s):  
Artur Nemś ◽  
Magdalena Nemś ◽  
Klaudia Świder

This article presents an analysis of selecting a seasonal heating system for an existing greenhouse. The analyzed object is located in Poland near Wroclaw, where summer flowers are grown. Appropriate thermal conditions must be ensured continuously for four heating months. The primary source of heat in the examined flower greenhouse was a coal-fired furnace. The analysis presented in the article shows a method of thermal balancing the object, determining heat demands in the analyzed period using the experiment plan, and also selecting a new heating system in the form of a heat pump. The analysis of the operation of the heating system was performed for air and ground source heat pumps to determine the profitability of their application in Polish climatic conditions. An economic analysis was also included and the investment impact on pollution emissions was calculated.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1274 ◽  
Author(s):  
Arif Widiatmojo ◽  
Sasimook Chokchai ◽  
Isao Takashima ◽  
Yohei Uchida ◽  
Kasumi Yasukawa ◽  
...  

The cooling of spaces in tropical regions, such as Southeast Asia, consumes a lot of energy. Additionally, rapid population and economic growth are resulting in an increasing demand for space cooling. The ground-source heat pump has been proven a reliable, cost-effective, safe, and environmentally-friendly alternative for cooling and heating spaces in various countries. In tropical countries, the presumption that the ground-source heat pump may not provide better thermal performance than the normal air-source heat pump arises because the difference between ground and atmospheric temperatures is essentially low. This paper reports the potential use of a ground-source heat pump with horizontal heat exchangers in a tropical country—Thailand. Daily operational data of two ground-source heat pumps and an air-source heat pump during a two-month operation are analyzed and compared. Life cycle cost analysis and CO2 emission estimation are adopted to evaluate the economic value of ground-source heat pump investment and potential CO2 reduction through the use of ground-source heat pumps, in comparison with the case for air-source heat pumps. It was found that the ground-source heat pumps consume 17.1% and 18.4% less electricity than the air-source heat pump during this period. Local production of heat pumps and heat exchangers, as well as rapid regional economic growth, can be positive factors for future ground-source heat pump application, not only in Thailand but also southeast Asian countries.


2019 ◽  
Vol 111 ◽  
pp. 01070
Author(s):  
Gheorghe Ilisei ◽  
Tiberiu Catalina ◽  
Robert Gavriliuc

Having in sight the need for a strong reduction in CO2 emissions and the fluctuation of the price of fossil fuels, the ground source resources alongside with the ground source heat pumps are becoming more and more widespread for meeting the heating/cooling demand of several types of buildings. This article targets to develop the thermal modelling of borehole heat storage systems. Trying to emphasize some certain advantages of a GSHP (ground source heat pump) with vertical boreholes, a case study analysing a residential solar passive house is presented. The numerical results are produced using different modelling software like DesignBuilder, EED (Earth Energy Designer) and a sizing method for the length of the boreholes (ASHRAE method). The idea of sizing the length of boreholes (main design parameter and good index in estimating the system’s cost) using two different methods shows the reliability of this modelling tool. The study shows that borehole’s length of a GSHP system can trigger a difference in electricity consumption up to 22%. Moreover, this sensitivity analysis aims to prove that the design of the whole system can be done beforehand just using modeling tools, without performing tests in-situ.


2020 ◽  
Vol 103 (2) ◽  
pp. 003685042092168
Author(s):  
Weisong Zhou ◽  
Peng Pei ◽  
Ruiyong Mao ◽  
Haibin Qian ◽  
Yanbing Hu ◽  
...  

In order to take advantage of different forms of heat pumps and to mitigate thermal imbalance underground caused by long-term operation of ground source heat pumps, hybrid ground source heat pump systems have received an increasing attention. In this research, based on the fact that abundant groundwater resources are commonly available in karst regions, a new strategy is introduced for selecting and determining hybrid ground source heat pump capacity. Five scenarios of hybrid ground source heat pump system coupling groundwater source heat pumps with other supplementary heat pumps are proposed in this article to provide appropriate options to eliminate heat buildup under different hydrogeologic conditions. Methodologies for sizing and selection are established. Then, a case study of techno-economic analysis was performed for a project in the karst region in South China. The results showed that these scenarios can effectively mitigate heat buildup, and under the hydrogeologic condition in the case study. Compared to the solo ground-coupled heat pump solution, the optimal solution (Solution 4 in this study) can reduce the annual costs by 16.10% and reduce the capital investment by 60%. Methodologies developed in this study are beneficial for selecting appropriate approaches to mitigate heat buildup and enhance competitiveness of ground source heat pumps.


2019 ◽  
Vol 111 ◽  
pp. 06023 ◽  
Author(s):  
Michele De Carli ◽  
Amaia Castelruiz Aguirre ◽  
Angelo Zarrella ◽  
Lucia Cardoso ◽  
Sarah Noyé ◽  
...  

For promoting the diffusion of GSHP and making the technology more accessible to the general public, in the H2020 research project “CHeap and Efficient APplication of reliable Ground Source Heat exchangers and PumpS” (acronym Cheap-GSHPs) a tool for sizing these systems has been developed, as well as a Decision Support System (DSS) able to assist the user in the preliminary design of the most suitable configuration. For all these tools a common platform has been carried out considering climatic conditions, energy demand of buildings, ground thermal properties, heat pump solutions repository, as well as renewable energy database to use in synergy with the GSHPs. Since the aims of the tools are different, there are different approaches. The design tool is mainly addressed to designers. The calculation may be done in two ways: with a simplified method based on the ASHRAE approach and with a detailed calculation based on the numerical tool CaRM (Capacity-Resistance method). The DSS final aim is to support decision-making, by providing the stakeholders at all the level with a series of scenario. The Cheap-GSHPs project has developed a DSS tool aimed at accelerating the decision-making process of designers and building owners as well as increasing market share of the Cheap-GSHPs technologies. Hence the DSS generates different possible solutions based on a defined general problem, identifying the optimal solution. Both tools are presented in the paper, showing the potentialities provided by both software.


2021 ◽  
Vol 25 (1) ◽  
pp. 840-852
Author(s):  
Agata Witkowska ◽  
Dorota Anna Krawczyk ◽  
Antonio Rodero

Abstract Becoming the world’s first climate-neutral continent by 2050 is currently the most ambitious European goal. Heat pumps are the example of the key technology, which could help to achieve the aim by heating, cooling and domestic hot water (DHW) preparation in an ecological and energy-efficient way. This article characterized a heat pump market in Europe between 2009 and 2020 with a special regard to France, Spain, Poland and Lithuania, for which a more detailed study was presented. The analysis was performed primarily on the grounds of statistics data provided by the European Heat Pump Association (EHPA), which determined the number of heat pumps sold based on standard questionnaires from national heat pump associations, statistical offices and research institutes. The highest number of heat pump sold in analysed period of time was recorded in France, Italy, Sweden, Norway, Germany and Spain. Poland was in the middle of the list, while Lithuania was one of the last countries. Considering the number of heat pumps sold per 1000 households, Norway was the clear leader, followed by Estonia, Finland, Sweden and Denmark. Lithuania was placed 12th, while Poland was only 18th. In terms of the type of lower and upper heat source, air-to-water and air-to-air heat pumps were the most popular choices, while ground source heat pumps were the least popular. The development of the heat pump market has been influenced by social, environmental, economic and technological factors.


Author(s):  
Hakan Demir ◽  
Ş. Özgür Atayılmaz ◽  
Özden Agra ◽  
Ahmet Selim Dalkılıç

The earth is an energy resource which has more suitable and stable temperatures than air. Ground Source Heat Pumps (GSHPs) were developed to use ground energy for residential heating. The most important part of a GSHP is the Ground Heat Exchanger (GHE) that consists of pipes buried in the soil and is used for transferring heat between the soil and the heat exchanger of the GSHP. Soil composition, density, moisture and burial depth of pipes affect the size of a GHE. Design of GSHP systems in different regions of US and Europe is performed using data from an experimental model. However, there are many more techniques including some complex calculations for sizing GHEs. An experimental study was carried out to investigate heat transfer in soil. A three-layer network is used for predicting heat transfer from a buried pipe. Measured fluid inlet temperatures were used in the artificial neural network model and the fluid outlet temperatures were obtained. The number of the neurons in the hidden layer was determined by a trial and error process together with cross-validation of the experimental data taken from literature evaluating the performance of the network and standard sensitivity analysis. Also, the results of the trained network were compared with the numerical study.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1752 ◽  
Author(s):  
Jeong Soo Shin ◽  
Jong Woo Park ◽  
Sean Hay Kim

We propose an integrated geothermal system that consists of air-conditioning and hot water service ground source heat pumps, both of which share a ground water loop. The proposed system increases the COP of the service hot water ground source heat pump by recovering the condensation heat of the air-conditioning ground source heat pump as an evaporator heat source for the hot water service ground source heat pump. Eventually this integration expands the scope and capacity of the evaporator source in addition to the underground water of heat exchangers, which also leads to increase the COP of the air-conditioning ground source heat pump. The integrated geothermal heat pump system was installed in a hotel, and then data were measured for a limited period due to the hotel’s ongoing business activities. A TRNSYS simulation model has been developed as a baseline, and the baseline has been calibrated with the measured data. By running one-year simulations, it turns out that the annual electricity use for heating and cooling, and service hot water was reduced by 19.1% in the cooling season, and by 9.6% in the heating season, with respect to the conventional configuration in which the air-conditioning heat pump and hot water service heat pump work individually on their own ground loops.


INFOMATEK ◽  
2017 ◽  
Vol 19 (01) ◽  
pp. 11
Author(s):  
Evi - Sofia

Kebutuhan daging ayam ras broiler (ayam pedaging) cenderung meningkat setiap tahun. Dengan terus meningkatnya konsumsi daging ayam tersebut diperlukan peternak-peternak ayam yang mampu memelihara ayam-ayam pedaging dengan baik. Salah satu penentu untuk menghasilkan ayam-ayam pedaging yang baik adalah sistem perkandangannya. Sistem perkandangan yang baik membutuhkan pengelolaan pengkondisian udara yang tepat. Karena ayam memerlukan temperatur ruangan yang berbeda-beda pada setiap masa pertumbuhannya. Penggunaan Heat Pump sebagai pemanas untuk kandang peternakan ayam broiler memang tidak lazim digunakan. Akan tetapi di beberapa negara penggunaan heat pump dengan fluida kerja air dari tanah (Ground Source Heat pumps/GSHP) banyak digunakan sebagai pemanas kandang ayam. Penggunaan heat pump dengan sistem kompresi uap masih belum ditemui. Kajian ini bertujuan untuk mencoba memanfaatkan Heat pump dengan sistem kompresi uap jika digunakan sebagai pemanas kandang ayam. Kajian diawali dengan menghitung energi yang dibutuhkan kandang, pemilihan heat pump dan perhitungan ducting. Dari hasil kajian ini menunjukkan bahwa penggunaan heat pump sebagai pemanas kandang ayam memungkinkan untuk digunakan


Sign in / Sign up

Export Citation Format

Share Document