scholarly journals Simulation of heat dissipation model of lithium-ion battery pack

2021 ◽  
Vol 300 ◽  
pp. 01014
Author(s):  
Maode Li ◽  
Chuan He ◽  
Jinkui Zheng

Lithium-ion power battery has become an important part of power battery. According to the performance and characteristics of lithiumion power battery, the influence of current common charge and discharge and different cooling methods on battery performance was analysed in this paper. According to the software simulation, in the 5C charge-discharge cycle, the maximum temperature of the cells with regular arrangement is 57.97°C, the maximum temperature of the cells with staggered arrangement is 55.83°C, and the maximum temperature of phase change cooling is 47.42°C. The most important thing is that the temperature difference between the cells with phase change cooling is only 5.5°C. Some simulation results of air cooling and phase change show that phase change cooling can control the heat dissipation and temperature rise of power battery well. The research in this paper can provide better theoretical guidance for the temperature rise, heat transfer and thermal management of automotive power battery.

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1937 ◽  
Author(s):  
Chuan-Wei Zhang ◽  
Shang-Rui Chen ◽  
Huai-Bin Gao ◽  
Ke-Jun Xu ◽  
Zhan Xia ◽  
...  

Scientific and reasonable battery thermal management systems contribute to improve the performance of a power battery, prolong its life of service, and improve its safety. Based on TAFEL-LAE895 type 100Ah ternary lithium ion power battery, this paper is conducted on charging and discharging experiments at different rates to study the rise of temperature and the uniformity of the battery. Paraffin can be used to reduce the surface temperature of the battery, while expanded graphite (EG) is added to improve the thermal conductivity and viscosity of the composite phase change material (CPCM), and to reduce the fluidity after melting. With the increase of graphite content, the heat storage capacity of phase change material (PCM) decreases, which affects the thermal management effect directly. Therefore, this paper combines heat pipe and semiconductor refrigeration technology to transform heat from the inner CPCM to the thermoelectric cooling sheet for heat dissipation. The results show that the surface temperature of the battery can be kept within a reasonable range when discharging at high rate. The temperature uniformity of the battery is improved and the energy of the battery is saved.


Author(s):  
Yuyang Wei ◽  
Martin Agelin-Chaab

Abstract Lithium-ion (Li-ion) batteries have been considered the most promising power source for road transportation. However, the performance and lifespan of Li-ion batteries are strongly dependent on the working temperature. The optimal working temperature is usually within a narrow range, from 25 to 40 °C, and the non-uniformity is usually required to be lower than 5 °C. Therefore, the industry is seeking a thermal management system that is lightweight, simple-structure, energy-saving, and environmentally friendly. Air-cooling, liquid-cooling, and phase-change material (PCM) are the three most common cooling methods in the literature. In this study, a new concept of hybrid-cooling which utilizes all the three cooling methods is proposed. The concept can use either normal tap water or the condensate from a vehicle’s air-conditioner as the coolant source. Also, the coolants can be released back to the ambient environment instead of a coolant recirculation system to reduce weight and complexity. The concept was studied in detail experimentally using the 26,650 Li-ion batteries. The results indicate that the proposed hybrid-cooling concept reduced the maximum surface temperature by about 83%, 70%, and 57% compared with the other three cooling methods: the no-cooling, air-cooling, and water-cooling test results, respectively. Additionally, the concept successfully maintained the temperature uniformity below the recommended 5 °C.


Author(s):  
Xiangping Liao ◽  
Chong Ma ◽  
Xiongbin Peng ◽  
Akhil Garg ◽  
Nengsheng Bao

Electric vehicles have become a trend in recent years, and the lithium-ion battery pack provides them with high power and energy. The battery thermal system with air cooling was always used to prevent the high temperature of the battery pack to avoid cycle life reduction and safety issues of lithium-ion batteries. This work employed an easily applied optimization method to design a more efficient battery pack with lower temperature and more uniform temperature distribution. The proposed method consisted of four steps: the air-cooling system design, computational fluid dynamics code setups, selection of surrogate models, and optimization of the battery pack. The investigated battery pack contained eight prismatic cells, and the cells were discharged under normal driving conditions. It was shown that the optimized design performs a lower maximum temperature of 2.7 K reduction and a smaller temperature standard deviation of 0.3 K reduction than the original design. This methodology can also be implemented in industries where the battery pack contains more battery cells.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3045 ◽  
Author(s):  
Xia ◽  
Liu ◽  
Huang ◽  
Yang ◽  
Lai ◽  
...  

In order to ensure thermal safety and extended cycle life of Lithium-ion batteries (LIBs) used in electric vehicles (EVs), a typical thermal management scheme was proposed as a reference design for the power battery pack. Through the development of the model for theoretical analysis and numerical simulation combined with the thermal management test bench, the designed scheme could be evaluated. In particular, the three-dimensional transient thermal model was used as the type of model. The test result verified the accuracy and the rationality of the model, but it also showed that the reference design could not reach the qualified standard of thermal performance of the power battery pack. Based on the heat dissipation strategy of liquid cooling, a novel improved design solution was proposed. The results showed that the maximum temperature of the power battery pack dropped by 1 °C, and the temperature difference was reduced by 2 °C, which improved the thermal performance of the power battery pack and consequently provides guidance for the design of the battery thermal management system (BTMS).


2006 ◽  
Vol 324-325 ◽  
pp. 895-898
Author(s):  
Wen Bo Luo ◽  
Ting Qing Yang

Temperature field is formed due to heat dissipation when material is subjected to irreversible deformation. In this paper, the heat dissipation in the crack-tip plastic zone was considered. By considering the propagating crack-tip plastic zone as a running heat source and constructing a reasonable heat source density distribution function, the temperature field around a steady running crack was obtained. It is shown that temperature rise is dependent on the crack growth speed and the material parameters. The maximum temperature rise reaches to >50 oC in our example calculations for a steady running crack in PMMA.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Jiangyun Zhang ◽  
Xinxi Li ◽  
Fengqi He ◽  
Jieshan He ◽  
Zhaoda Zhong ◽  
...  

The temperature has to be controlled adequately to maintain the electric vehicles (EVs) within a safety range. Using paraffin as the heat dissipation source to control the temperature rise is developed. And the expanded graphite (EG) is applied to improve the thermal conductivity. In this study, the paraffin and EG composite phase change material (PCM) was prepared and characterized. And then, the composite PCM have been applied in the 42110 LiFePO4 battery module (48 V/10 Ah) for experimental research. Different discharge rate and pulse experiments were carried out at various working conditions, including room temperature (25°C), high temperature (35°C), and low temperature (−20°C). Furthermore, in order to obtain the practical loading test data, a battery pack with the similar specifications by 2S∗2P with PCM-based modules were installed in the EVs for various practical road experiments including the flat ground, 5°, 10°, and 20° slope. Testing results indicated that the PCM cooling system can control the peak temperature under 42°C and balance the maximum temperature difference within 5°C. Even in extreme high-discharge pulse current process, peak temperature can be controlled within 50°C. The aforementioned results exhibit that PCM cooling in battery thermal management has promising advantages over traditional air cooling.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012005
Author(s):  
E Grimonia ◽  
M R C Andhika ◽  
M F N Aulady ◽  
R V C Rubi ◽  
N L Hamidah

Abstract The lithium-ion battery is promising energy storage that provides proper stability, no memory effect, low self-discharge rate, and high energy density. During its usage, batteries generate heat caused by energy loss due to the transition of chemical energy to electricity and the electron transfer cycle. Consequently, a thermal management system by cooling methods in the battery is needed to control heat. One of the cooling methods is a passive cooling system using a phase change material (PCM). PCM can accommodate a large amount of heat through small dimensions. It is easy to apply and requires no power in the cooling system. This study aims to find the best type of PCM criteria for a Lithium-ion battery cooling system. The research was conducted by simulations using computational fluid dynamics. The variations were using PCM Capric Acid and PCM Hexacosane, with thickness variations of 3 mm, 6 mm, and 9 mm. Hexacosane PCM with 9 mm thickness indicates the best result to reduce heat up to 6.54°K, demonstrating a suitable passive cooling system for Li-ion batteries.


2021 ◽  
Vol 2125 (1) ◽  
pp. 012062
Author(s):  
Chao Lv ◽  
Tianyuan Xia ◽  
Hongxin Yin ◽  
Minghe Sun

Abstract Lithium-ion battery is widely used as the mainstream power source of electric vehicles owing to its high specific energy and low self-discharge rate. However, the performance of the lithium-ion battery is largely hindered by its heat dissipation issue. In this paper, lithium-ion battery pack with main channel and multi-branch channel based on liquid cooling sys-tem is studied. Further, numerical simulation was used to analyze the effects of coolant temperature and flow rate on cooling performance. Based on the original pipeline structure, a new pipeline structure was proposed in the present work. The results show that increasing the cool-ant flow rate not only reduces the maximum temperature of the battery pack, but also reduces the temperature difference. Lowering the coolant temperature could largely decrease the maximum temperature of the battery pack, but it tends to widen the temperature difference and worsen the temperature uniformity. Up-on comparison, maximum temperature is found to be decreased by 0.44K, whereas, the temperature difference of the battery decreased and the temperature uniformity is improved.


Sign in / Sign up

Export Citation Format

Share Document