scholarly journals Performance modelling of the Darrieus wind turbine

2021 ◽  
Vol 302 ◽  
pp. 01001
Author(s):  
Thuzar Mon ◽  
Supakit Worasinchai

Three-dimensional numerical investigation of the Darrieus wind turbines equipped with different aerofoils is presented in this paper. In the modelling, the computational domain was divided into three different domains and they are blade, rotor, and tunnel domains. A cylindrical domain was created to cover the blade area so that a fine mesh can be applied. The Computational Fluid Dynamics (CFD) was employed to solve and analyze the flow field around the turbine. The Menter Shear Stress turbulence model was chosen in this investigation. Boundary conditions applied were velocity at the inlet, pressure opening at the outlet, and symmetry on other sides. Comparison of simulation results and experiments showed good agreement. The investigation of the effects of the rotor solidity and the aerofoil shape was performed. The simulation results reveal that the aerofoil shape has a significant impact on the turbine performance. For the rotor solidity of 0.7, the change from the NACA section to the S1046 leads to a reduction of power at low tip speed ratios but the performance improvement is observed when the tip speed ratio is greater than 1.5. With the lower solidity of 0.375, the effects of the aerofoil change is less pronounced at low tip speed ratios. Nevertheless, the maximum power coefficient increases for both cases. Further analysis shows that the S1046 is less sensitive to the wind speed change and is promising in the urban application where the wind speed is relatively low.

Author(s):  
A. Tourlidakis ◽  
K. Vafiadis ◽  
V. Andrianopoulos ◽  
I. Kalogeropoulos

Many researchers proposed methods for improving the efficiency of small Horizontal Axis Wind Turbines (HAWTs). One of the methods developed to increase the efficiency of HAWTs and to overcome the theoretical Betz limit is the introduction of a converging – diverging casing around the turbine. To further improve the performance of the diffuser a flange is placed at its outlet, which smoothes the flow along the diffuser interior, allowing larger diffusion angles to be utilized. The purpose of this research work is the aerodynamic design and computational analysis of such an arrangement with the use of Computational Fluid Dynamics (CFD). First, a HAWT rotor rotating at 600 RPM was designed with the use of the Blade Element Momentum (BEM) method. The three rotor blades are constructed using the NREL airfoil sections family S833, S834 and S835. The power coefficient of the rotor was optimised in a wind speed range of 5 – 10 m/s, with a maximum value of 0.45 for a wind speed of 7m/s. A full three-dimensional CFD analysis was carried out for the modeling of the flow around the rotor and through the flanged diffuser. The computational domain consisted of two regions with different frames of reference (a stationary and a rotating). The rotating frame rotates at 600 RPM and includes the rotor with the blades. All the simulations were performed using the commercial CFD software package ANSYS CFX. The Shear Stress Transport turbulence model was used for the simulations. Detailed flow analysis results are presented, dealing with the various investigated test cases, a) isolated turbine rotor, b) diffuser without the presence of the turbine, and c) the full turbine – diffuser arrangement for different flange heights and wind speeds. By varying the height of the flange and the wind speed, the effects of the above on the flow field and the power coefficient of the turbine were studied. The CFD resulting power coefficients are also compared and good agreement with existing in the literature experimental data was obtained. The results showed that there is a significant improvement in the performance of the wind turbine (by a factor from 2 to 5 on power coefficient at high blade tip speed ratio) and the proposed modification is particularly attractive for small wind turbines. The particular characteristics of the flow field, that are responsible for this improvement are identified and analysed in detail offering a better understanding of the physical processes involved.


2021 ◽  
pp. 1-37
Author(s):  
Mabrouk Mosbahi ◽  
Mouna Derbel ◽  
Mariem Lajnef ◽  
Bouzid Mosbahi ◽  
Zied Driss ◽  
...  

Abstract Twisted Darrieus water turbine is receiving growing attentiveness for small-scale hydropower generation. Accordingly, the need for raised water energy conversion incentivizes researchers to focalise on the blade shape optimization of twisted Darrieus turbine. In view of this, an experimental analysis has been performed to appraise the efficiency of a spiral Darrieus water rotor in the present work. To better the performance parameters of the studied water rotor with twisted blades, three novel blade shapes, namely U-shaped blade, V-shaped blade and W-shaped blade, have been numerically tested using a computational fluid dynamics three-dimensional numerical model. Maximum power coefficient of Darrieus rotor reaches 0.17 at 0.63 tip-speed ratio using twisted blades. Using V-shaped blades, maximum power coefficient has been risen up to 0.185. The current study could be practically applied to provide more effective employment of twisted Darrieus turbines and to improve the generated power from flowing water such as river streams, tidal currents, or other man made water canals.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2649 ◽  
Author(s):  
Artur Bugała ◽  
Olga Roszyk

This paper presents the results of the computational fluid dynamics (CFD) simulation of the airflow for a 300 W horizontal axis wind turbine, using additional structural elements which modify the original shape of the rotor in the form of multi-shaped bowls which change the airflow distribution. A three-dimensional CAD model of the tested wind turbine was presented, with three variants subjected to simulation: a basic wind turbine without the element that modifies the airflow distribution, a turbine with a plano-convex bowl, and a turbine with a centrally convex bowl, with the hyperbolic disappearance of convexity as the radius of the rotor increases. The momentary value of wind speed, recorded at measuring points located in the plane of wind turbine blades, demonstrated an increase when compared to the base model by 35% for the wind turbine with the plano-convex bowl, for the wind speed of 5 m/s, and 31.3% and 49% for the higher approaching wind speed, for the plano-convex bowl and centrally convex bowl, respectively. The centrally convex bowl seems to be more appropriate for higher approaching wind speeds. An increase in wind turbine efficiency, described by the power coefficient, for solutions with aerodynamic bowls was observed.


2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Wahyu Santoso ◽  
Herman Saputro ◽  
Husin Bugis

<p><em>Energy from fossil fuels consisting of petroleum, coal, natural gas containing raw material for energy fulfillment in Indonesia is still very central through the use of raw materials from renewable energy is still very low. In Indonesia the potential for renewable energy such as wind energy needs to be optimized. One of the uses of wind energy is through savonius wind turbine as electricity generators. Characteristics of savonius wind turbine with vertical axis rotors which gave a simple shape, and that able to control low speeds. This is in accordance with regions in Indonesi which have low average speeds.         This experimental study, aims to determine the description of wind potential and determine the performance of savonius wind turbines on the coast of Demak regency on the electrical energy produced. Savonius wind turbine used is made of galvalum material in the form of an S type rotor with diameter 1.1 m and height 1.4 m, using pulley transmission system with multiplication ratio 1:6 dan using generator type PMG 200 W. This research uses the method experiment. Data collection in the form of wind speed, humidity, temperature, rotor rotation speed, voltage and electric curret is carried out at 14.30 to 17.30 Western Indonesian Time. Data Analysis in this study uses quantitative descriptive analysis. The result showed the potential of wind on the coast of Demak regency have an average wind speed of 2,02 m/s with a temperature of 31</em><em>,</em><em>34 </em><em><sup>0</sup></em><em>C and humidity of 76,96. And the performance of the installed wind turbine produces the highest power 3.5 watt with an electric power coefficient of 0,181 and tip speed ratio around 1,75. From these result, the potensial of wind with performance savonius turbine can generate electricity used for pond lighting in the village Berahan Kulon Kecamatan Wedung. </em><em></em></p>


2018 ◽  
Vol 1 (1 (Aug)) ◽  
pp. 41-50 ◽  
Author(s):  
P. Modali ◽  
N. S. Kolekar ◽  
A. Banerjee

In tidal streams and rivers, the flow of water can be at yaw to the turbine rotor plane causing performance degradation and a skewed downstream wake. The current study aims to quantify the performance variation and associated wake behavior caused by a tidal turbine operating in a yawed inflow environment. A three-dimensional computational fluid dynamics study was carried out using multiple reference frame approach using κ-ω SST turbulence model with curvature correction. The computations were validated by comparison with experimental results on a 1:20 scale prototype for a 0° yaw case performed in a laboratory flume. The simulations were performed using a three-bladed, constant chord, untwisted tidal turbine operating at uniform inflow. Yaw effects were observed for angles ranging from 5° to 15°. An increase in yaw over this range caused a power coefficient deficit of 26% and a thrust coefficient deficit of about 8% at a tip speed ratio of 5 that corresponds to the maximum power coefficient for the tested turbine. In addition, wake propagation was studied up to a downstream distance of ten rotor radius, and skewness in the wake, proportional to yaw angle was observed. At higher yaw angles, the flow around the turbine rotor was found to cushion the tip vortices, accelerating the interaction between the tip vortices and the skewed wake, thereby facilitating a faster wake recovery. The center of the wake was tracked using a center of mass technique. The center of wake analysis was used to better quantify the deviation of the wake with increasing yaw angle. It was observed that with an increase in yaw angle, the recovery distance moved closer to the rotor plane. The wake was noticed to meander around the turbine centerline with increasing downstream distance and slightly deviate towards the free surface above the turbine centerline, magnitude of which varied depending on yaw.


2018 ◽  
Vol 53 ◽  
pp. 03041 ◽  
Author(s):  
Li Shoutu ◽  
Wang Yin ◽  
Yang Congxin ◽  
Li Ye

In this paper, the effect of the three typical tip vanes on the loading of an H-VAWT is investigated by employing the three-dimensional unsteady numerical simulation method. The results show that the both transient tangential force coefficient (CT) and normal force coefficient (Cn) have obvious change when the winglet and the V type vane is used at the blade's tip, respectively. However, in three tip vanes, the CT average value is the lowest and the CT fluctuation characteristic is the highest when the winglet is used. Although the winglet and V type vane contribute to change the transient CT and Cn, the normal force is increased too, it results in increasing fatigue loading and decreasing lifetime for H-VAWT. By comparison, the effect of the plate vane on the loading is weaker. Additionally, the winglet is advantage to improve power coefficient in the low tip speed ratio.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Hani Muhsen ◽  
Wael Al-Kouz ◽  
Waqar Khan

This work aims at designing and optimizing the performance of a small Horizontal-Axis-Wind-Turbine to obtain a power coefficient (CP) higher than 40% at a low wind speed of 5 m/s. Two symmetric in shape airfoils were used to get the final optimized airfoil. The main objective is to optimize the blade parameters that influence the design of the blade since the small turbines are prone to show low performance due to the low Reynolds number as a result of the small size of the rotor and the low wind speed. Therefore, the optimization process will select different airfoils and extract their performance at the design conditions to find the best sections which form the optimal design of the blade. The sections of the blade in the final version mainly consist of two different sections belong to S1210 and S1223 airfoils. The optimization process goes further by investigating the performance of the final design, and it employs the blade element momentum theory to enhance the design. Finally, the rotor-design was obtained, which consists of three blades with a diameter of 4 m, a hub of 20 cm radius, a tip-speed ratio of 6.5 and can obtain about 650 W with a Power coefficient of 0.445 at a wind-speed of 5.5 m/s, reaching a power of 1.18 kW and a power coefficient of 0.40 at a wind-speed of 7 m/s.


2013 ◽  
Vol 291-294 ◽  
pp. 527-530
Author(s):  
Peng Zhan Zhou ◽  
Fang Sheng Tan

Based on BLADED software, the aerodynamic performance of a large scale wind turbine blade was analyzed under variable condition. The results show that the rated power of the blade under variable condition is increased 10%, when the rated wind speed is changed from 10.5m/s to 11.0 m/s. The blade’s wind power coefficient is above 0.46, and its tip speed ratio is between 7.8 and 11.4. When its tip speed ratio is 9.5, the blade’s maximum wind power coefficient is 0.486. It is indicated that the blade has good aerodynamic performance and wide scope of wind speed adaptive capacity. The blade root’s equivalent fatigue load is 2.11 MN•m, and its extreme flapwise load is 4.61 MN•m. The loads under variable condition are both less than that of the designed condition, so the blade’s application under variable condition is safe.


Author(s):  
Xiuqing Xing ◽  
Chang Wei Kang ◽  
George Xu ◽  
Jing Lou ◽  
Ken Takagi ◽  
...  

Abstract A three dimensional Computational Fluid Dynamics (CFD) model solving Reynolds-averaged Navier-Stokes (RANS) equations with k-ε turbulence model has been developed based on OpenFoam to investigate a tidal turbine performance. The CFD model is validated by comparing the simulation results with the performance characteristic data. Simulation results match the measured data with discrepancies less than 5.4%. The well validated model is then adopted to predict the turbine performance with a current heading angle of 30 degree. The simulated turbine power coefficient and flow field details from OpenFoam are compared with those obtained from commercial software ANSYS FLUENT for verification. The two simulated results match each other with a difference of only 3%. Simulated results indicate that the turbine power output drops significantly when the tidal turbine operates with a current heading angle of 30 degree. The performance loss due to a misalignment between the current and the turbine axis is analyzed with the aim to identify main causes and provide recommendations to tidal turbine operation.


Sign in / Sign up

Export Citation Format

Share Document