scholarly journals Experimental and CFD modelling of a Progressive Cavity Pump using overset unstructured mesh

2021 ◽  
Vol 321 ◽  
pp. 02014
Author(s):  
Deisy Becerra ◽  
Miguel Asuaje ◽  
Alexander Zambrano ◽  
Nicolás Ratkovich

A Progressive Cavity Pump (PCP) is widely used in industry as an artificial lift method because of its high efficiency during the pumping of high viscosity fluids and two-phase liquid-gas flow slurries. However, modelling PCP through Computational Fluid Dynamics (CFD) is quite complicated since it requires a meshing algorithm and is computationally expensive. Therefore, this study's main objective is to develop a CFD model capable of predicting a progressive cavity pump's behavior by implementing the Overset Mesh, which includes the relative motion between the rotor and the stator. Overset meshes are used to discretize a computational domain with several different meshes that arbitrarily overlap each other. They are most useful because the rotor geometry can be enclosed in a fluid (background) region and set to different positions. The PCP analyzed in this study is a GRP 4.0-4000 208 TSL 1-2 mono-lobe, which contains an API J55 stainless steel rotor and stator handling four Newtonian fluids (water, oil API 11, oil API 22, and oil API 31) at three rotational speeds (100 rpm, 150 rpm, and 200 rpm). The experimental data presented in this paper was collected in the PCP experimental facility of the SLACOL BCP Group (Tenjo, Colombia). All the measurements were made using the CILA2S controller for artificial lifting in the underground and on the surface to determine the operational curves of flowrate, volumetric efficiency, torque, and power consumed. The CFD model implementation was developed on Star- CCM+ version 15.02-R8 of 2020 for laminar and turbulent regimens. The results obtained through this study show that it is unnecessary to program a structured mesh to capture a progressive cavity pump's performance since the operational parameters evaluated to have an accuracy of 10% concerning the experimental data.Similarly, capturing the viscous effect near the wall and the transversal y horizontal slip inside the cavities is possible. The flow rate obtained for higher viscosity oils is more significant for the same pressure differences for water with average volumetric efficiencies of 85%. Finally, the pressure increase per stage is homogeneous along the pump's entire length for all fluids evaluated

Author(s):  
Lissett Barrios ◽  
Stuart Scott ◽  
Charles Deuel

The paper reports on developmental research on the effects of viscosity and two phases, liquid–gas fluids on ESPs which are multi stage centrifugal pumps for deep bore holes. Multiphase viscous performance in a full-scale Electrical Submersible Pump (ESP) system at Shell’s Gasmer facility has been studied experimentally and theoretically. The main objectives is to predict the operational conditions that cause degradations for high viscosity fluids when operating in high Gas Liquid Radio (GLR) wells to support operation in Shell major Projects. The system studied was a 1025 series tandem WJE 1000. The test was performed using this configuration with ten or more pump stages moving fluids with viscosity from 2 to 200 cP at various speed, intake pressure and Gas Void Fractions (GVF). For safety considerations the injected gas was restricted to nitrogen or air. The ESP system is a central artificial lift method commonly used for medium to high flow rate wells. Multiphase flow and viscous fluids causes problems in pump applications. Viscous fluids and free gas inside an ESP can cause head degradation and gas locking. Substantial attempts have been made to model centrifugal pump performance under gas-liquid viscous applications, however due to the complexity this is still a uncertain problem. The determination of the two-phase flow performance in these harmful conditions in the ESP is fundamental aspects in the surveillance operation. The testing at Shell’s Gasmer facility revealed that the ESP system performed as theoretical over the range of single flowrates and light viscosity oils up to Gas Volume Fractions (GVF) around 25%. The developed correlations predict GVF at the pump intake based on the operational parameters. ESP performance degrades at viscosity higher than 100cp as compared to light oil applications, gas lock condition is observed at gas fraction higher than 45%. Pump flowrate can be obtained from electrical current and boost for all range of GVF and speed. The main technical contributions are the analysis of pump head degradation under two important variables, high viscosity and two-phase flow inside the ESP.


2021 ◽  
Author(s):  
Luiz Pastre ◽  
Jorge Biazussi ◽  
William Monte Verde ◽  
Antonio Bannwart

Abstract Although being widely used as an artificial lift method for heavy oil field developments, Electrical Submersible Pump (ESP) performance in high viscous applications is not fully understood. In order to improve knowledge of pump behavior under such conditions, Equinor has developed stage qualification tests as part of the technical requirements for deploying ESPs in Peregrino Field located offshore Brazil and has funded a series of research efforts to better design and operate the system more efficiently. Qualification tests were made mandatory for every stage type prior to field deployment in Peregrino. It is known that the affinity laws don´t hold true for high viscosity applications. Therefore, extensive qualification tests are required to provide actual stage performance in high viscous applications. Test results are used to optimize ESP system design for each well selecting the most efficient stage type considering specific well application challenges. In addition, the actual pump performance improves accuracy in production allocation algorithms. A better understanding of ESP behavior in viscous fluid application helps improving oil production and allows ESP operation with higher efficiency, increasing system run life. Shear forces inside ESP stages generate emulsion that compromises ESP performance. Lab tests in controlled environments have helped Equinor to gather valuable information about emulsion formation and evaluate ESP performance in conditions similar to field application. Equinor has funded studies to better understand two-phase flow (oil-water) which allowed visualization and investigation of oil drops dynamics inside the impeller. In addition, experimental procedures were proposed to investigate the effective viscosity of emulsion at pump discharge and the phase inversion hysteresis in the transition water-oil and oil-water emulsion. In addition to qualification tests and research performed to better understand system behavior, Equinor has developed and improved procedures to operate ESP systems in high viscous applications with emulsion production during 10 years of operation in Peregrino field. Such conditions also impose challenges to ESP system reliability. Over the years, Equinor has peformed failure analysis to enhance ESP system robustness which, combined with upper completion design, have improved system operation and reliability decreasing operating costs in Peregrino field.


2004 ◽  
Vol 69 (7) ◽  
pp. 581-599 ◽  
Author(s):  
Ljubisa Nikolic ◽  
Vesna Nikolic ◽  
Vlada Veljkovic ◽  
Miodrag Lazic ◽  
Dejan Skala

The influence of the gas flow rate and vibration intensity in the presence of the solid phase (polypropylene spheres) on axial mixing of the liquid phase in a three phase (gas-liquid-solid) Karr reciprocating plate column (RPC) was investigated. Assuming that the dispersionmodel of liquid flow could be used for the real situation inside the column, the dispersion coefficient of the liquid phase was determined as a function of different operating parameters. For a two-phase liquid-solid RPC the following correlation was derived: DL = 1.26(Af)1.42 UL 0.51 ?S 0.23 and a similar equation could be applied with ? 30 % confidence for the calculation of axial dispersion in the case of a three-phase RPC: DL = 1.39(Af)0.47 UL0.42UG0.03 ?S -0.26.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1745
Author(s):  
Marek Ochowiak ◽  
Daniel Janecki ◽  
Andżelika Krupińska ◽  
Sylwia Włodarczak ◽  
Tomasz Wilk ◽  
...  

This paper presents the results of numerical simulations for the developed and discussed conical two-phase atomizers with swirl flow, differing in the ratio of the height of the swirl chamber to its diameter. Experiments were carried out for SAN-1 with HS/DS = 1 and SAN-2 with HS/DS = 4 atomizers. The study was conducted over a range of Reynolds number for liquid ReL = (1400; 5650) and for gas ReG = (2970; 9900). Numerical calculations were performed with the use of computational fluid dynamics (CFD), which were verified on the basis of experimental data. Based on the analysis of experimental studies and simulations results the influence of operational parameters and changes of the atomizer geometry on the generated spray was demonstrated. As the gas flow rate increased and the swirl chamber height decreased, the spray angle increased. Higher velocity values of the liquid and greater turbulence occur in the center of the spray. The flow inside the atomizer determines the nature of the spray obtained. The geometry of the swirl chamber influences the air core formed inside the atomizer, and this determines the atomization effect. The results of numerical simulations not only confirm the results of experimental studies, but also provide additional information on internal and external fluid flow.


1992 ◽  
Vol 114 (1) ◽  
pp. 80-84 ◽  
Author(s):  
A. Salhi ◽  
C. Rey ◽  
J. M. Rosant

This paper is concerned with axial pressure gradient in single-phase and two-phase flow at low void fraction in a narrow annular space between two concentric cylinders, the inner one rotating. From experimental results, the coupling function (inertial forces/centrifugal forces) is parameterized by Taylor or Rossby numbers for two values of the intercylindrical width (clearance). The results are discussed with regard to different flow regimes and it is shown in particular that transition from the turbulent vorticed regime to the turbulent regime occurs at Ro ≃ 1. The proposed correlation agrees in a satisfactory manner to all the regimes studied in our experiments and in those given in the bibliography. In addition, original tests with a two-phase liquid/gas flow at 5 percent G.O.R. (gas oil ratio), for a finely dispersed gas phase are also reported. These results indicate a similar behavior to single-phase flows, justifying the transposition of the same correlation in the framework of the homogeneous model.


2016 ◽  
Vol 745 ◽  
pp. 032124 ◽  
Author(s):  
M Zych ◽  
R Hanus ◽  
M Jaszczur ◽  
A Strzępowicz ◽  
L Petryka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document