scholarly journals A rapid flood inundation model in the floodplain area due to an extreme rainfall event

2021 ◽  
Vol 325 ◽  
pp. 01024
Author(s):  
Indah Salsabiela ◽  
Kuswantoro Marko ◽  
Mangapul P. Tambunan ◽  
Faris Zulkarnain

Extreme rainfall in East Jakarta on February 19, 2021 caused flooding in a number of subdistricts. The research was conducted in the central part of Kali Sunter, which flows through three subdistricts, namely Cipinang Melayu, Cipinang Muara, and Pondok Bambu. The purpose of the study was to do flood hazard modeling and analyze the characteristics of flood-affected areas based on land use and topography. Inundation and flood hazard maps is done by: calculating the flood discharge using the SCS-CN method, flood inundation modelling using HEC-RAS, and analyzing the characteristics of the inundated area. This combination is effective for rapid modeling during extreme rainfall events. Based on the research, the distribution of the highest flood hazard area is in RW 004 Cipinang Melayu, with the widest inundation affecting small and medium-sized houses. The characteristics of the affected area are that there is green and empty land which reduces the potential for water to inundate buildings or other land uses. Buildings located in low-hazard housing areas tend to be more organized and relatively medium to large in size. While the types of housing in the Cipinang Melayu with a high level of danger tend to be dense and small to medium in size, but the majority have two floors as a form of flood adaptation.

2019 ◽  
Vol 5 (11) ◽  
pp. 2309-2317 ◽  
Author(s):  
Murphy Ponce Mohammed

The objective of the study is to create a flood hazard model of Tarlac River and to calibrate the model based on data gathered from the Philippine Atmospheric Geophysical and Astronomical Services Administration. The study employed analytical method wherein the 1D flood modeling was utilized. GIS, DEM data, rainfall data, river analysis system, HEC-GeoRAS, hydrologic modeling system, and HEC-GeoHMS were utilized. The different flood models revealed that Tarlac River is not expected to be overtopped by flood water as regards the different extreme rainfall events considered in the present study. The RAS model simulation was based on the concept that there is no base flow observed within the river reach before the occurrence of any extreme rainfall event. Henceforth, there is still no 100 percent assurance that the river reach will not be overtopped with the occurrence of initial base flow in combination with the occurrence of higher extreme rainfall events. Further studies or investigations should be delved into such combination of events. Possible levee breach of the Tarlac River as well as the possible incorporation of flood mitigating interventions in future modeling scenarios can be likewise considered.


2020 ◽  
Vol 18 (1) ◽  
pp. 89-96
Author(s):  
Ahmad Nur Akma Juangga Fura ◽  
Retno Utami Agung Wiyono ◽  
Indarto Indarto

Madura subject to a high level of flood hazard. One of the main causes of flood is extreme rainfall. Global warming generates changes in the amount of extreme rainfall. This research is conducted to identify and to analyze the trends, changes, and randomness of 24-hour extreme rainfall data on Madura Island. The method used is a non-parametric method which includes the Median Crossing test, the Mann-Kendall test, and the Rank-Sum test at the significance level of α =0.05. The analysis was carried out on 31 rain gauge stations. The recording period observed is between 1991-2015. The results of the analysis show that based on the Median Crossing test, most rainfall stations have data originating from random processes. The result shows also that the maximum 24-hour extreme rainfall trend is significantly decreased in a few locations, while for the majority of other stations have no experience a significant trend.


2021 ◽  
Author(s):  
E. F. Asbridge ◽  
D. Low Choy ◽  
B. Mackey ◽  
S. Serrao-Neumann ◽  
P. Taygfeld ◽  
...  

AbstractThe peri-urban interface (PUI) exhibits characteristic qualities of both urban and rural regions, and this complexity has meant that risk assessments and long-term planning for PUI are lagging, despite these areas representing new developing settlement frontiers. This study aims to address this knowledge gap by modifying an existing approach to quantify and assess flood risk. The risk triangle framework was used to map exposure, vulnerability and biophysical variables; however, in a novel application, the risk triangle framework was adapted by presuming that there is a variation in the degree of exposure, vulnerability and biophysical variables. Within Australia and globally, PUIs are often coastal, and flood risk associated with rainfall and coastal inundation poses considerable risk to communities in the PUI; these risks will be further exacerbated should projections of increasing frequency of extreme rainfall events and accelerating sea-level rise eventuate. An indicator-based approach using the risk triangle framework that maps flood hazard, exposure and vulnerability was used to integrate the biophysical and socio-economic flooding risk for communities in PUI of the St Georges Basin and Sussex Inlet catchments of south-eastern Australia. Integrating the flood risk triangle with future scenarios of demographic and climate change, and considering factors that contribute to PUI flood risk, facilitated the identification of planning strategies that would reduce the future rate of increase in flood risk. These planning strategies are useful for natural resource managers and land use planners across Australia and globally, who are tasked with balancing socio-economic prosperity for a changing population, whilst maintaining and enhancing ecosystem services and values. The indicator-based approach used in this study provides a cost-effective first-pass risk assessment and is a valuable tool for decision makers planning for flood risk across PUIs in NSW and globally.


2011 ◽  
Vol 24 (7) ◽  
pp. 1913-1921 ◽  
Author(s):  
Mateus da Silva Teixeira ◽  
Prakki Satyamurty

Abstract A new approach to define heavy and extreme rainfall events based on cluster analysis and area-average rainfall series is presented. The annual frequency of the heavy and extreme rainfall events is obtained for the southeastern and southern Brazil regions. In the 1960–2004 period, 510 (98) and 466 (77) heavy (extreme) rainfall events are identified in the two regions. Monthly distributions of the events closely follow the monthly climatological rainfall in the two regions. In both regions, annual heavy and extreme rainfall event frequencies present increasing trends in the 45-yr period. However, only in southern Brazil is the trend statistically significant. Although longer time series are necessary to ensure the existence of long-term trends, the positive trends are somewhat alarming since they indicate that climate changes, in terms of rainfall regimes, are possibly under way in Brazil.


2021 ◽  
Vol 169 (3-4) ◽  
Author(s):  
Linh N. Luu ◽  
Paolo Scussolini ◽  
Sarah Kew ◽  
Sjoukje Philip ◽  
Mugni Hadi Hariadi ◽  
...  

AbstractIn October 2020, Central Vietnam was struck by heavy rain resulting from a sequence of 5 tropical depressions and typhoons. The immense amount of water led to extensive flooding and landslides that killed more than 200 people, injured more than 500 people, and caused direct damages valued at approximately 1.2 billion USD. Here, we quantify how the intensity of the precipitation leading to such exceptional impacts is attributable to anthropogenic climate change. First, we define the event as the regional maximum of annual maximum 15-day average rainfall (Rx15day). We then analyse the trend in Rx15day over Central Vietnam from the observations and simulations in the PRIMAVERA and CORDEX-CORE ensembles, which pass our evaluation tests, by applying the generalised extreme value (GEV) distribution in which location and scale parameters exponentially covary with increasing global temperatures. Combining these observations and model results, we find that the 2020 event, occurring about once every 80 years (at least 17 years), has not changed in either probability of occurrence (a factor 1.0, ranging from 0.4 to 2.4) or intensity (0%, ranging from −8 to +8%) in the present climate in comparison with early-industrial climate. This implies that the effect of human-induced climate change contributing to this persistent extreme rainfall event is small compared to natural variability. However, given the scale of damage of this hazard, our results underline that more investment in disaster risk reduction for this type of rainfall-induced flood hazard is of importance, even independent of the effect of anthropogenic climate change. Moreover, as both observations and model simulations will be extended with the passage of time, we encourage more climate change impact investigations on the extreme in the future that help adaptation and mitigation plans and raise awareness in the country.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2201
Author(s):  
Jinn-Chyi Chen ◽  
Wen-Shun Huang

This study examined the conditions that lead to debris flows, and their association with the rainfall return period (T) and the probability of debris flow occurrence (P) in the Chenyulan watershed, central Taiwan. Several extreme events have occurred in the Chenyulan watershed in the past, including the Chi-Chi earthquake and extreme rainfall events. The T for three rainfall indexes (i.e., the maximum hourly rainfall depth (Im), the maximum 24-h rainfall amount (Rd), and RI (RI = Im× Rd)) were analyzed, and the T associated with the triggering of debris flows is presented. The P–T relationship can be determined using three indexes, Im, Rd, and RI; how it is affected and unaffected by extreme events was developed. Models for evaluating P using the three rainfall indexes were proposed and used to evaluate P between 2009 and 2020 (i.e., after the extreme rainfall event of Typhoon Morakot in 2009). The results of this study showed that the P‒T relationship, using the RI or Rd index, was reasonable for predicting the probability of debris flow occurrence.


Author(s):  
J. R. Santillan ◽  
A. M. Amora ◽  
M. Makinano-Santillan ◽  
J. T. Marqueso ◽  
L. C. Cutamora ◽  
...  

In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the local government units and the concerned communities within Tago River Basin as an aid in determining in an advance manner all those infrastructures (buildings, roads and bridges) and land-cover that can be affected by different extreme rainfall event flood scenarios.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 29
Author(s):  
Fibor J. Tan ◽  
Edgardo Jade R. Rarugal ◽  
Francis Aldrine A. Uy

Flooding is a perennial problem in the Philippines during the monsoon season intensified by the effects of typhoon. On average, there are 20 typhoons that enter the Philippine Area of Responsibility (PAR), and many of these make landfall causing catastrophic aftermath. Extreme rainfall events could lead to flooding in the downstream floodplain and landslide in mountainous terrains. In this study, which is for the case of Calumpang River that drains to the populated and developing region of Batangas City, the focus is on flooding in the floodplain areas. The river was modelled using LiDAR digital elevation model (DEM) that has an accuracy of 20cm in the vertical and 50cm in the horizontal. The result of this is river hydraulic model that can be used to accurately generate flood inundation simulations and flood hazard maps.  


2021 ◽  
Author(s):  
Song-Yue Yang ◽  
Che-Hao Chang ◽  
Chih-Tsung Hsu ◽  
Shiang-Jen Wu

Abstract Coupled 1D-2D hydrodynamic models are widely utilized in flood hazard mapping. Researchers have explored several uncertainties in flood hazard mapping, but have not addressed the uncertainty of drainage density. Drainage density is equal to total length of the drainage divided by the catchment area. The model sets denser the tributary drainages for higher drainage density values. This study uses a designed case and a real case, Yanshuixi Drainage in Tainan, Taiwan, to assess the uncertainty of drainage density in flood hazard mapping. Analytical results indicate that under the same return period rainfall, reduction in tributary drainages in a model (indicating a lower drainage density) results in an underestimate of the flooded area in tributary drainages. This underestimate causes higher peak discharges and total volume of discharges in the drainages, leading to flooding in certain downstream reaches, thereby overestimating the flooded area. The uncertainty of drainage density decreases with increased rainfall. We suggest that modeling flood hazard mapping with low return period rainfalls requires tributary drainages. For extreme rainfall events, a lower drainage density could be selected, but the drainage density of local key areas should be raised.


2018 ◽  
Vol 18 (5) ◽  
pp. 1832-1840 ◽  
Author(s):  
Rohini P. Devkota ◽  
Tek Maraseni

Abstract Most developing countries, like Nepal, are expected to experience the greatest impact of climate change (CC) sooner and on a greater magnitude than other developed countries. Increase in the magnitude and frequency of extreme rainfall events is likely to increase the risk of flooding in rivers. The West Rapti River basin is one of the most flood prone and also one of the most dynamic and economically important basins of Nepal. This study elicits the willingness to pay (WTP) from the local people in the basin to reduce risks from possible floods due to CC. The WTP for flood mitigation in different flood hazard zones and flood scenarios were determined using referendum method and a face to face questionnaire survey. From a total of 720 households across all flood zones, a stratified randomly selected sample of 210 households was surveyed. The sample included households from a range of socio-economic backgrounds. The average WTP varied by flood hazard zone and within each zone, by CC-induced flood scenarios. The average WTP of respondents was highest for the critical flood prone zone, followed by moderate and low flood prone zones. Similarly, within each zone, the average WTP increased with increasing flood magnitudes due to CC. The variation of average WTP of respondents in different flood prone zones and scenarios indicate different levels of perceived severity. Moreover, the introduction of the concept of ‘man-day’ or ‘labour-day’ in WTP research is a novel and applicable methodological approach, particularly in the South Asian region. The findings of this study are useful for policy implications for the design of participatory flood management plans in the river basin.


Sign in / Sign up

Export Citation Format

Share Document