scholarly journals An algorithm for comparative analysis of power and storage systems for maritime applications

2022 ◽  
Vol 334 ◽  
pp. 06001
Author(s):  
Massimo Rivarolo ◽  
Federico Iester ◽  
Aristide F. Massardo

This paper presents an innovative algorithm to compare traditional and innovative energy systems onboard for maritime applications. The solutions are compared adopting a multi-criteria method, considering four parameters (weight, volume, cost, emissions) and their relevance according to the kind of ship and navigation route. The algorithm, which includes a large and updated database of market solutions, leads to the implementation of HELM (Helper for Energy Layouts in Maritime applications) tool. HELM was conceived to support the design of maritime systems: it chooses the best technology comparing traditional marine diesel engines, propulsion systems with alternative fuels (methanol, ammonia, LNG) and innovative low-emission technologies (fuel cell and batteries). Two case studies are investigated: (i) a small passenger ship for short routes (ii) and a large size ro-ro cargo ship. For case (i), fuel cells represent a competitive solution, in particular considering navigation in emission control areas. For case study (ii) Internal Combustion Engines shows are the best solution. The evaluation of alternative fuels is performed, considering a sensitivity analysis on emissions’ importance: methanol, LNG, and ammonia are promising solutions. For case (i), the installation of electrical batteries is also evaluated to analyse potential advantages to reduce the amount of H2 stored onboard.

2019 ◽  
Vol 113 ◽  
pp. 02005
Author(s):  
D. Rattazzi ◽  
M. Rivarolo ◽  
T. Lamberti ◽  
L. Magistri

This paper aims to develop a tool for the performances comparison of innovative energy systems on board ships, both for concentrated and distributed generation applications. In the first part of the study, the tool database has been developed throughout a wide analysis of the available market solutions in terms of energy generation devices (i.e. fuel cells, internal combustion engines, micro gas turbines), fuels (hydrogen, natural gas, diesel) and related storage technologies. Many of these data have been collected also thanks to the laboratory experience of the authors’ research group on different innovative energy systems. From the database, a wide range of maps has been created, correlating costs, volumes, weights and emissions with the installed power and the operational hours required, given by the user as input. The tool highlights the best solution according to the different relevance chosen by the user for each key parameter (i.e. costs, volumes, emissions). In the second part, two different case studies are presented in order to underline how the installed power, the different ship typology and the user requirements affect the choice of the best solution. It is worth noting that the methodology has a general value, as the tool can be applied to both the design of new ships, and to the retrofit of already existing ships in order to respect new requirements (e.g. more and more stringent normative in terms of pollutant emissions in ports and restricted areas). Furthermore, the database can be easily extended to other generation and storage technologies.


2019 ◽  
Vol 141 (7) ◽  
Author(s):  
Herry Lesmana ◽  
Zhezi Zhang ◽  
Xianming Li ◽  
Mingming Zhu ◽  
Wenqiang Xu ◽  
...  

Ammonia (NH3) is an excellent hydrogen (H2) carrier that is easy to bulk manufacture, handle, transport, and use. NH3 is itself combustible and could potentially become a clean transport fuel for direct use in internal combustion engines (ICEs). This technical review examines the current state of knowledge of NH3 as a fuel in ICEs on its own or in mixtures with other fuels. A particular case of interest is to partially dissociate NH3 in situ to produce an NH3/H2 mixture before injection into the engine cylinders. A key element of the present innovation, the presence of H2 is expected to allow easy control and enhanced performance of NH3 combustion. The key thermochemical properties of NH3 are collected and compared to those of conventional and alternative fuels. The basic combustion characteristics and properties of NH3 and its mixtures with H2 are summarized, providing a theoretical basis for evaluating NH3 combustion in ICEs. The combustion chemistry and kinetics of NH3 combustion and mechanisms of NOx formation and destruction are also discussed. The potential applications of NH3 in conventional ICEs and advanced homogenous charge compression ignition (HCCI) engines are analyzed.


Author(s):  
Xianghui Meng ◽  
Youbai Xie

For complex equipments, the phenomena of system declining such as wear and fatigue often takes place and spreads after a period of running. So it is important to identify the interior structural change of system during maintenance to avoid the system to be broken abruptly. Traditionally there are two methods to analyze and predict the structural change of system. One is from the monitoring data of equipments. Another is from the mechanism of structural changing and the interior working process of equipments. In this paper a combining method, which combining the advantages of the above two methods, is used to identify the structural change of internal combustion engines. The principle of the method is to firstly build an analytical system model, in which the system parameters stand for the structural parameters or constraints. Then the current value of system parameters in the model can be identified by comparing the calculating responding results and the detected responding data. From the varying of system parameters the structural change of system can be deduced. For internal combustion engines (ICEs), the most important CPSR (combustion Chamber-Piston-cylinder Sleeve-piston Rings) system is taken as the research object. A multidisciplinary model is built to simulate the interior working processes, especially the combustion process, the structural dynamics process, the tribology process and the coupling processes among them. Then the seeking-roots method (SRM) is used to identify the value of system parameters. A case study on a low power gasoline engine verifies the above method. In the case study, the blow by gap, which stands for the wear of piston rings and cylinder sleeve, is identified with the detected combustion pressure. The case study shows that the method of this paper can identify the structural change of complex equipments. It can provide accurate information for equipments maintenance as well as the residual life prediction.


2015 ◽  
Vol 787 ◽  
pp. 687-691
Author(s):  
Tarigonda Hari Prasad ◽  
R. Meenakshi Reddy ◽  
P. Mallikarjuna Rao

Fossil fuels are exhausting quickly because of incremental utilization rate due to increase population and essential comforts on par with civilization. In this connection, the conventional fuels especially petrol and diesel for internal combustion engines, are getting exhausted at an alarming rate. In order to plan for survival of technology in future it is necessary to plan for alternate fuels. Further, these fossil fuels cause serious environmental problems as they release toxic gases into the atmosphere at high temperatures and concentrations. The predicted global energy consumption is increasing at faster rate. In view of this and many other related issues, these fuels will have to be replaced completely or partially by less harmful alternative, eco-friendly and renewable source fuels for the internal combustion engines. Hence, throughout the world, lot of research work is in progress pertaining to suitability and feasibility of alternative fuels. Biodiesel is one of the promising sources of energy to mitigate both the serious problems of the society viz., depletion of fossil fuels and environmental pollution. In the present work, experiments are carried out on a Single cylinder diesel engine which is commonly used in agricultural sector. Experiments are conducted by fuelling the diesel engine with bio-diesel with LPG through inlet manifold. The engine is properly modified to operate under dual fuel operation using LPG through inlet manifold as fuel along FME as ignition source. The brake thermal efficiency of FME with LPG (2LPM) blend is increased at an average of 5% when compared to the pure diesel fuel. HC emissions of FME with LPG (2LPM) blend are reduced by about at an average of 21% when compared to the pure diesel fuel. CO emissions of FME with LPG (2LPM) blends are reduced at an average of 33.6% when compared to the pure diesel fuel. NOx emissions of FME with LPG (2LPM) blend are reduced at an average of 4.4% when compared to the pure diesel fuel. Smoke opacity of FME with LPG (2LPM) blend is reduced at an average of 10% when compared to the pure diesel fuel.


2019 ◽  
Vol 4 (8) ◽  
pp. 80-84
Author(s):  
Van Quy Nguyen ◽  
Huu Cuong Le

To cope with the depletion of fossil fuels and the threat of exhaust pollution from internal combustion engines, research finds alternative fuels. Step by step to completely replace fossil fuels that will be exhausted in the future and environmentally friendly due to internal combustion engines is an urgent and important issue. Diversify fuel sources used for internal combustion engines and environmentally friendly when using Jatropha - Diesel fuel mixture. The paper focuses on studying the ability to use biodiesel derived from Jatropha seeds with the volume ratios of 5%, 10% and 15% on experimental engines. Thereby, it will analyze and evaluate the technical features and pollution levels of engines compared to pure fuels. Experimental study assessing the effect of Jatropha - Diesel mixing ratio on the emission formation compared with emissions in Vikyno EV2600 engines.


2019 ◽  
Vol 9 (21) ◽  
pp. 4597 ◽  
Author(s):  
José Ramón Serrano ◽  
Ricardo Novella ◽  
Pedro Piqueras

Internal combustion engines (ICE) are the main propulsion systems in road transport [...]


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4086 ◽  
Author(s):  
Jorge Martins ◽  
F. P. Brito

The recent transport electrification trend is pushing governments to limit the future use of Internal Combustion Engines (ICEs). However, the rationale for this strong limitation is frequently not sufficiently addressed or justified. The problem does not seem to lie within the engines nor with the combustion by themselves but seemingly, rather with the rise in greenhouse gases (GHG), namely CO2, rejected to the atmosphere. However, it is frequent that the distinction between fossil CO2 and renewable CO2 production is not made, or even between CO2 emissions and pollutant emissions. The present revision paper discusses and introduces different alternative fuels that can be burned in IC Engines and would eliminate, or substantially reduce the emission of fossil CO2 into the atmosphere. These may be non-carbon fuels such as hydrogen or ammonia, or biofuels such as alcohols, ethers or esters, including synthetic fuels. There are also other types of fuels that may be used, such as those based on turpentine or even glycerin which could maintain ICEs as a valuable option for transportation.


2021 ◽  
Vol 15 (2) ◽  
pp. 8153-8168
Author(s):  
Saeed Chamehsara ◽  
Mohammadreza Karami

In order to repair internal combustion engines, sometimes it is necessary to replace the components of these engines with each other. Therefore changes in engine performance are inevitable in these conditions. In the present study, by changing the coneccting rod and the crank of the OM457 turbo diesel-fueled engine with the OM444, it was observed that the performance of the engine decreases. Numerical simulations have been carried out to study the Possible ways to mitigate this reduction. One way to achieve this goal is to change the fuel injector’s characteristics such as, fuel injector’s nozzle hole diameter, number of nozzle holes, and start time of fuel injection. In this study, the impact of these parameters on the performance and emissions of these engines were analyzed. Another scenario is an increase in inlet fuel and air by the same amount. The results indicate that By reducing the diameter of fuel injector holes and hole numbers, the performance of the engine was increased. on the other hand, the NOx emissions were increased while the amount of soot emission decreased. The same results were concluded by retarding the start time of injection. Subsequently, a case study of changing fuel injector parameters for mitigation of decreased performance was performed. These parameters were simultaneously applied, and results were compared. The performance of the engine with improved injector’s characteristics was close to the main OM457. Similar results were obtained by increasing the amount of inlet air and fuel.


2017 ◽  
Vol 4 (3) ◽  
pp. 20-29 ◽  
Author(s):  
N.V.Mahesh Babu Talupula ◽  
◽  
P.Srinivasa Rao ◽  
B.Sudheer Prem Kumar ◽  
Ch.P raveen

Sign in / Sign up

Export Citation Format

Share Document