scholarly journals Analytical Method for Estimating Energy Output of Small Wind Turbines Integrated in Urban Areas

2012 ◽  
Vol 33 ◽  
pp. 05011
Author(s):  
M. Popovac
Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 35 ◽  
Author(s):  
Francesco Castellani ◽  
Davide Astolfi ◽  
Mauro Peppoloni ◽  
Francesco Natili ◽  
Daniele Buttà ◽  
...  

In the recent years, distributed energy production has been one of the main research topics about renewable energies. The decentralization of electric production from wind resources raises the issues of reducing the size of generators, from the MW scale of industrial wind farm turbines to the kW scale, and possibly employing them in urban areas, where the wind flow is complex and extremely turbulent because of the presence of buildings and obstacles. On these grounds, the use of small-scale vertical axis small wind turbines (VASWT) is a valid choice for on-site generation (OSG), considering their low sensitivity with respect to turbulent flow and that there is no need to align the turbine with wind direction, as occurs with horizontal axis small wind turbines (HASWT). In addition, VASWTs have a minor acoustic impact with respect to HASWTs. The aim of this paper is to study the interactions that take place between a 1.2 kW, vertical axis, Darrieus VASWT turbine and a small, experimental building, in order to analyze the noise and the vibrations transmitted to the structure. One method to damp the vibrations is then assessed through spectral analysis of data acquired through accelerometers located both in the mast of the wind turbine and at the building walls. The results confirm the usefulness of dampers to increase the building comfort regarding vibrations.


Author(s):  
K. Vafiadis ◽  
H. Fintikakis ◽  
I. Zaproudis ◽  
A. Tourlidakis

In urban areas, it is preferable to use small wind turbines which may be integrated to a building in order to supply the local grid with green energy. The main drawback of using wind turbines in urban areas is that the air flow is affected by the existence of nearby buildings, which in conjunction with the variation of wind speed, wind direction and turbulence may adversely affect wind energy extraction. Moreover, the efficiency of a wind turbine is limited by the Betz limit. One of the methods developed to increase the efficiency of small wind turbines and to overcome the Betz limit is the introduction of a converging – diverging shroud around the turbine. Several researchers have studied the effect of shrouds on Horizontal Axis Wind Turbines, but relatively little research has been carried out on shroud augmented Vertical Axis Wind Turbines. This paper presents the numerical study of a shrouded Vertical Axis Wind Turbine. A wide range of test cases, were examined in order to predict the flow characteristics around the rotor, through the shroud and through the rotor – shroud arrangement using 3D Computational Fluid Dynamics simulations. The power output of the shrouded rotor has been improved by a factor greater than 2.0. The detailed flow analysis results showed that there is a significant improvement in the performance of the wind turbine.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
A. Z. Dhunny ◽  
M. R. Lollchund ◽  
S. D. D. V. Rughooputh

Interests in wind energy have gained impetus in many developed and developing countries worldwide during the last three decades. This is due to awareness of the population about the depletion of fossil fuels as well as Government campaigns and initiatives to encourage the use of renewable sources of energy. This work focuses on the wind energy potential at two selected locations (Plaisance and Vacoas) in Mauritius. The emphasis is to assess whether small-wind turbines have a potential in these regions for generation of power for domestic applications. Such wind turbines can range in size from 400 W to 10 kW depending on the amount of electricity to be generated. The assessment is based on the correlation of the local wind speed data to a two-parameter Weibull probability distribution in order to effectively estimate the average wind power density of the sites. Nearly 40 years of mean wind speed data is utilized. Of the two sites investigated it is found that Plaisance yielded the highest wind velocity (as compared to Vacoas). The study also estimates the energy output of six commercial small-wind turbines of capacity ranging from 1 kW to 3 kW at these two sites, placed at multiple heights.


Author(s):  
M. Brennenstuhl ◽  
M. von der Gruen ◽  
S. Harbola ◽  
A. Koukofikis ◽  
R. Padsala ◽  
...  

Abstract. In the face of climate change and the energy transition that the German federal government is aiming for, all renewable energy potentials need to be tapped. Unfortunately, small wind turbines play a niche role in Germany and most other countries despite the fact, that although they offer advantages as e.g. almost seasonal independent energy production in close proximity to the consumer on the same low-voltage grid level. One reason beside the lower wind speeds that can be expected closer to the ground is, that in comparison to PV (photovoltaic), for which good yield forecasts can be made using global radiation measurements from nearby weather stations or online databases, the yield of small wind turbines, especially in urban areas, can only be forecasted using on-site measurements due to the influence of the surrounding buildings and topography. This method is time-consuming and costly. To address this, within this work a Computational Fluid Dynamics (CFD) simulation based visualization framework for the investigation of the small wind turbine potential is presented. In this specific case the energy supply company EnBW is planning to refurbish the “Neuer Stöckach” urban quarter on the former “Stöckach” company site. As part of the redevelopment, a comprehensive energy concept is planned to integrate renewable energies. In this context the integration of small wind turbines into the energy concept is examined according to this new methodology.


Author(s):  
Kenneth W. Van Treuren

The category of small wind turbines is a rapidly growing market. The U. S., Europe (UK), and China are of particular interest and seeing the most growth. This paper examines the category of small wind starting with the variety of definitions found in the literature. Growth world-wide, with an emphasis on these major markets, is analyzed for trends and predicted development. The focus is on fixed pitch, small horizontal axis wind turbines, with a direct drive DC generator in the 1–10 kW class. To understand small wind turbines it is necessary to discuss design tools available for design. Included in this design discussion is the necessity for computational fluid dynamic models as well as experimentally testing both open rotors and wind tunnel models. In order for small wind turbines to continue to improve, better technologies are necessary. For design, wind turbines must be optimized for peak performance to include startup/cut-in speeds and other modifications. These wind turbines will rely on new and purposely designed airfoils; however, for low Reynolds number conditions actual airfoil data are needed as many of the computational tools do not accurately predict separation. Increasingly, noise is an issue, especially if these wind turbines will be sited in populated urban areas. An analysis of noise generation as well as design techniques for reducing noise is necessary for future designs. Important discussions on the technologies particular to small wind turbines should include the topics of aerodynamics and structures/materials. Future applications of small wind turbines seem bright. Small wind turbines are contributing to the concept of distributed generation and helping to reduce the carbon footprint. Urban environments are becoming more accepted for small wind turbines which lead to studies of flow fields in and around buildings. Of particular note are hybrid systems which combine wind with other energy generation systems such as solar, internal combustion engines, and diesel engines to name a few. These systems are advantageous for the homeowner, small business, cell phone towers, remote locations, and backup emergency power systems (to include lighting). Lastly, the concept of energy storage must be addressed in the context of small wind turbines, especially those turbines used in an isolated application. Permitting and government incentives are critical to the future success of these wind turbines.


2012 ◽  
pp. 1083-1088
Author(s):  
O.H. Ando Junior ◽  
M.O. Oliveira ◽  
J.M. Neto ◽  
A.D. Spacek ◽  
R.C.B. Leborgne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document