scholarly journals Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity

2018 ◽  
Vol 168 ◽  
pp. 02004
Author(s):  
Yun Hao ◽  
Yiyi Zhu ◽  
Jong-Ping Hsu

In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell’s wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.

2017 ◽  
Vol 14 (12) ◽  
pp. 1750179 ◽  
Author(s):  
Kimet Jusufi

In this paper, we have investigated the deflection angle of light by wormholes using a new geometrical method known as Gibbons–Werner method (GW). In particular, we have calculated the deflection angle of light in the weak limit approximation in two wormhole space–time geometries: Ellis wormhole and Janis–Newman–Winnicour (JNW) wormhole. We have employed the famous Gauss–Bonnet theorem (GBT) to the Ellis wormhole optical geometry and JNW wormhole optical geometry, respectively. By using GBT, we computed the deflection angles in leading orders by these wormholes and our results were compared with the ones in the literature.


Author(s):  
A.N. Alexandrov ◽  
V.I. Zhdanov ◽  
V.M. Sliusar

We propose a new test of the Einstein’s formula for the gravitational light deflection using the Galactic microlensing. In this classical formula, the deflection angle ∆ϕ is inversely proportional to the impact parameter p of incoming photons travelling from infinity.


2006 ◽  
Vol 21 (25) ◽  
pp. 5119-5139 ◽  
Author(s):  
JONG-PING HSU

We formulate and explore the physical implications of a new translation gauge theory of gravity in flat space–time with a new Yang–Mills action, which involves quadratic gauge curvature and fermions. The theory shows that the presence of an "effective Riemann metric tensor" for the motions of classical particles and light rays is probably the manifestation of the translation gauge symmetry in flat physical space–time. In the post-Newtonian approximation of the tensor gauge field produced by the energy–momentum tensor, the results are shown to be consistent with classical tests of gravity and with the quadrupole radiations of binary pulsars.


2019 ◽  
Vol 34 (31) ◽  
pp. 1950362
Author(s):  
Leonardo Hsu ◽  
Jong-Ping Hsu ◽  
Yun Hao

Within the gauge symmetry framework, the [Formula: see text] symmetry of electrodynamics is violated in the presence of gravity with spacetime translational gauge symmetry in inertial frames. For a light ray, an eikonal equation with effective metric tensors is derived in the geometric-optics limit. Under these conditions, the angle of the deflection of light by the sun is calculated to be [Formula: see text] in inertial frames without requiring a gauge condition such as [Formula: see text]. In contrast, if the theory is [Formula: see text] gauge invariant, one can impose the gauge condition [Formula: see text] in the derivation of the eikonal equation. In this case, one obtains a slightly different effective metric tensor and a different angle of deflection [Formula: see text]. However, because the precision of experiments in the last century using optical frequencies has been no better than (10–20)% due to large systematic errors, one cannot unambiguously rule out the result [Formula: see text]. We hope that the precision of these data can be improved in order to test Yang–Mills gravity.


2021 ◽  
pp. 014459872110102
Author(s):  
Lu Weiyong ◽  
He Changchun

To better evaluate the spatial steering effect of directional perforation hydraulic fractures, evaluation indexes for the spatial steering effect are first proposed in this paper. Then, these indexes are used to quantitatively evaluate existing physical experimental results. Finally, with the help of RFPA2D-Flow software, the influence of perforation length and azimuth on the spatial steering process of hydraulic fracture are quantitatively analysed using four evaluation indexes. It is shown by the results that the spatial deflection trajectory, deflection distance, deflection angle and initiation pressure of hydraulic fractures can be used as quantitative evaluation indexes for the spatial steering effect of hydraulic fractures. The deflection paths of directional perforation hydraulic fractures are basically the same. They all gradually deflect to the maximum horizontal principal stress direction from the perforation hole and finally represent a double-wing bending fracture. The deflection distance, deflection angle and initiation pressure of hydraulic fractures increase gradually with increasing perforation azimuth, and the sensitivity of the deflection angle to the perforation azimuth of hydraulic fractures also increases. With increasing perforation length, the deflection distance of hydraulic fractures increases gradually. However, the deflection angle and initiation pressure decrease gradually, as does the sensitivity.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov

Abstract We construct a new covariant action for “flat” self-dual gravity in four space-time dimensions. The action has just one term, but when expanded around an appropriate background gives rise to a kinetic term and a cubic interaction. Upon imposing the light-cone gauge, the action reproduces the expected chiral interaction of Siegel. The new action is in many ways analogous to the known covariant action for self-dual Yang-Mills theory. There is also a sense in which the new self-dual gravity action exhibits the double copy of self-dual Yang-Mills structure.


1980 ◽  
Vol 22 (12) ◽  
pp. 2947-2949 ◽  
Author(s):  
Reuben Epstein ◽  
Irwin I. Shapiro
Keyword(s):  
The Sun ◽  

1999 ◽  
Vol 14 (30) ◽  
pp. 4819-4840
Author(s):  
JAN FISCHER ◽  
IVO VRKOČ

We discuss the current use of the operator-product expansion in QCD calculations. Treating the OPE as an expansion in inverse powers of an energy-squared variable (with possible exponential terms added), approximating the vacuum expectation value of the operator product by several terms and assuming a bound on the remainder along the Euclidean region, we observe how the bound varies with increasing deflection from the Euclidean ray down to the cut (Minkowski region). We argue that the assumption that the remainder is constant for all angles in the cut complex plane down to the Minkowski region is not justified. Making specific assumptions on the properties of the expanded function, we obtain bounds on the remainder in explicit form and show that they are very sensitive both to the deflection angle and to the class of functions considered. The results obtained are discussed in connection with calculations of the coupling constant αs from the τ decay.


2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


Sign in / Sign up

Export Citation Format

Share Document