scholarly journals Schwinger mechanism in electromagnetic field in de Sitter spacetime

2018 ◽  
Vol 168 ◽  
pp. 03002 ◽  
Author(s):  
Ehsan Bavarsad ◽  
Sang Pyo Kim ◽  
Clément Stahl ◽  
She-Sheng Xue

We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS) spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.

1970 ◽  
Vol 109 (3) ◽  
pp. 75-80 ◽  
Author(s):  
P. Baltrenas ◽  
R. Buckus ◽  
S. Vasarevicius

Operation of office, video and audio equipment generates electromagnetic fields. Many employees who use computers for a long time complain of headaches and other health troubles. This has become a serious problem as electromagnetic fields are invisible and intangible and an employee, therefore, is unaware of how to protect oneself from them. This work involves modelling of the strengths of computer-generated electric and magnetic fields in the frequency ranges 5 Hz - 2 kHz and 2 kHz - 400 kHz in a computer classroom. After measuring the initial parameters of an electric and a magnetic field, electromagnetic fields propagating in the classroom were modelled with the help of the software VIZIMAG. Propagation and directions of electromagnetic field isolines are also presented. The modelling software VIZIMAG allows us to identify the strength of electric field or the frequency of magnetic field as well as the area of a room where they are present. Separate models are designed for both electric strength and magnetic flux density. Ill. 9, bibl. 11, tabl. 1 (in English; abstracts in English and Lithuanian).http://dx.doi.org/10.5755/j01.eee.109.3.175


2018 ◽  
Vol 97 (2) ◽  
Author(s):  
Ehsan Bavarsad ◽  
Sang Pyo Kim ◽  
Clément Stahl ◽  
She-Sheng Xue

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Valerie Domcke ◽  
Yohei Ema ◽  
Kyohei Mukaida

Abstract We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect. While the standard Schwinger production rate is proportional to $$ \exp \left(-\pi \left({m}^2+{p}_T^2\right)/E\right) $$ exp − π m 2 + p T 2 / E , with m and pT denoting the fermion mass and its momentum transverse to the electric field E, the axion assisted Schwinger effect can be enhanced at large momenta to exp(−πm2/E). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.


2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


2018 ◽  
Vol 33 (25) ◽  
pp. 1850144
Author(s):  
Maryam Gholizadeh Arashti ◽  
Majid Dehghani

The Schwinger effect in the presence of instantons and background magnetic field was considered to study the dependence of critical electric field on instanton density and magnetic field using AdS/CFT conjecture. The gravity side is the near horizon limit of D3[Formula: see text]D(−[Formula: see text]1) background with electric and magnetic fields on the brane. Our approach is based on the potential analysis for particle–antiparticle pair at zero and finite temperatures, where the zero temperature case is a semi-confining theory. We find that presence of instantons suppresses the pair creation effect, similar to a background magnetic field. Then, the production rate will be obtained numerically using the expectation value of circular Wilson loop. The obtained production rate in a magnetic field is in agreement with previous results.


Author(s):  
Mihaela-Andreea Băloi ◽  
Cosmin Crucean ◽  
Diana Popescu

Author(s):  
Lei Tian ◽  
Limei Song ◽  
Yu Zheng ◽  
Jinhai Wang

Multi-coil magnetic stimulation has advantages over single-coil magnetic stimulation, such as more accurate targeting and larger stimulation range. In this paper, a 4 × 4 array multichannel magnetic stimulation system based on a submillimeter planar square spiral coil is proposed. The effects of multiple currents with different directions on the electromagnetic field strength and the focusing zone of the array-structured magnetic stimulation system are studied. The spatial distribution characteristics of the electromagnetic field are discussed. In addition, a method is proposed that can predict the spatial distributions of the electric and magnetic fields when currents in different directions are applied to the array-structured magnetic stimulation system. The study results show that in the section of z = 2 μm, the maximum and average magnetic field strengths of the array-structured magnetic stimulation system are 6.39 mT and 2.68 mT, respectively. The maximum and average electric field strengths are 614.7 mV/m and 122.82 mV/m, respectively, where 84.39% of the measured electric field values are greater than 73 mV/m. The average magnetic field strength of the focusing zone, i.e., the zone in between the two coils, is 3.38 mT with a mean square deviation of 0.18. Therefore, the array-structured multi-channel magnetic stimulation system based on a planar square spiral coil can have a small size of 412 μm × 412 μm × 1.7 μm, which helps improving the spatial distribution of electromagnetic field and increase the effectiveness of magnetic stimulation. The main contribution of this paper is a method for designing multichannel micro-magnetic stimulation devices.


2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.


1972 ◽  
Vol 51 (3) ◽  
pp. 585-591 ◽  
Author(s):  
C. Sozou

The deformation of a liquid drop immersed in a conducting fluid by the imposition of a uniform electric field is investigated. The flow field set up is due to the surface charge and the tangential electric field stress over the surface of the drop, and the rotationality of the Lorentz force which is set up by the electric current and the associated magnetic field. It is shown that when the fluids are poor conductors and good dielectrics the effects of the Lorentz force are minimal and the flow field is due to the stresses of the electric field tangential to the surface of the drop, in agreement with other authors. When, however, the fluids are highly conducting and poor dielectrics the effects of the Lorentz force may be predominant, especially for larger drops.


Sign in / Sign up

Export Citation Format

Share Document