A 4 × 4 array multichannel magnetic stimulation system using submillimeter sized planar square spiral coils: The spatial distribution of electromagnetic field

Author(s):  
Lei Tian ◽  
Limei Song ◽  
Yu Zheng ◽  
Jinhai Wang

Multi-coil magnetic stimulation has advantages over single-coil magnetic stimulation, such as more accurate targeting and larger stimulation range. In this paper, a 4 × 4 array multichannel magnetic stimulation system based on a submillimeter planar square spiral coil is proposed. The effects of multiple currents with different directions on the electromagnetic field strength and the focusing zone of the array-structured magnetic stimulation system are studied. The spatial distribution characteristics of the electromagnetic field are discussed. In addition, a method is proposed that can predict the spatial distributions of the electric and magnetic fields when currents in different directions are applied to the array-structured magnetic stimulation system. The study results show that in the section of z = 2 μm, the maximum and average magnetic field strengths of the array-structured magnetic stimulation system are 6.39 mT and 2.68 mT, respectively. The maximum and average electric field strengths are 614.7 mV/m and 122.82 mV/m, respectively, where 84.39% of the measured electric field values are greater than 73 mV/m. The average magnetic field strength of the focusing zone, i.e., the zone in between the two coils, is 3.38 mT with a mean square deviation of 0.18. Therefore, the array-structured multi-channel magnetic stimulation system based on a planar square spiral coil can have a small size of 412 μm × 412 μm × 1.7 μm, which helps improving the spatial distribution of electromagnetic field and increase the effectiveness of magnetic stimulation. The main contribution of this paper is a method for designing multichannel micro-magnetic stimulation devices.

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Swati Baruah ◽  
U. Sarma ◽  
R. Ganesh

Lane formation dynamics in externally driven pair-ion plasma (PIP) particles is studied in the presence of external magnetic field using Langevin dynamics (LD) simulation. The phase diagram obtained distinguishing the no-lane and lane states is systematically determined from a study of various Coulomb coupling parameter values. A peculiar lane formation-disintegration parameter space is identified; lane formation area extended to a wide range of Coulomb coupling parameter values is observed before disappearing to a mixed phase. The different phases are identified by calculating the order parameter. This and the critical parameters are calculated directly from LD simulation. The critical electric field strength value above which the lanes are formed distinctly is obtained, and it is observed that in the presence of the external magnetic field, the PIP system requires a higher value of the electric field strength to enter into the lane formation state than that in the absence of the magnetic field. We further find out the critical value of electric field frequency beyond which the system exhibits a transition back to the disordered state and this critical frequency is found as an increasing function of the electric field strength in the presence of an external magnetic field. The movement of the lanes is also observed in a direction perpendicular to that of the applied electric and magnetic field directions, which reveals the existence of the electric field drift in the system under study. We also use an oblique force field as the external driving force, both in the presence and absence of the external magnetic field. The application of this oblique force changes the orientation of the lane structures for different applied oblique angle values.


2019 ◽  
Vol 50 (3) ◽  
pp. 333-345 ◽  
Author(s):  
Danmei Sun ◽  
Meixuan Chen ◽  
Symon Podilchak ◽  
Apostolos Georgiadis ◽  
Qassim S Abdullahi ◽  
...  

Smart and interactive textiles have been attracted great attention in recent years. This research explored three different techniques and processes in developing textile-based conductive coils that are able to embed in a garment layer. Coils made through embroidery and screen printing have good dimensional stability, although the resistance of screen printed coil is too high due to the low conductivity of the print ink. Laser cut coil provided the best electrical conductivity; however, the disadvantage of this method is that it is very difficult to keep the completed coil to the predetermined shape and dimension. The tested results show that an electromagnetic field has been generated between the textile-based conductive coil and an external coil that is directly powered by electricity. The magnetic field and electric field worked simultaneously to complete the wireless charging process.


2018 ◽  
Vol 615 ◽  
pp. A98 ◽  
Author(s):  
D. D. Mulcahy ◽  
A. Horneffer ◽  
R. Beck ◽  
M. Krause ◽  
P. Schmidt ◽  
...  

Context. Cosmic rays and magnetic fields play an important role for the formation and dynamics of gaseous halos of galaxies. Aims. Low-frequency radio continuum observations of edge-on galaxies are ideal to study cosmic-ray electrons (CREs) in halos via radio synchrotron emission and to measure magnetic field strengths. Spectral information can be used to test models of CRE propagation. Free–free absorption by ionized gas at low frequencies allows us to investigate the properties of the warm ionized medium in the disk. Methods. We obtained new observations of the edge-on spiral galaxy NGC 891 at 129–163 MHz with the LOw Frequency ARray (LOFAR) and at 13–18 GHz with the Arcminute Microkelvin Imager (AMI) and combine them with recent high-resolution Very Large Array (VLA) observations at 1–2 GHz, enabling us to study the radio continuum emission over two orders of magnitude in frequency. Results. The spectrum of the integrated nonthermal flux density can be fitted by a power law with a spectral steepening towards higher frequencies or by a curved polynomial. Spectral flattening at low frequencies due to free–free absorption is detected in star-forming regions of the disk. The mean magnetic field strength in the halo is 7 ± 2 μG. The scale heights of the nonthermal halo emission at 146 MHz are larger than those at 1.5 GHz everywhere, with a mean ratio of 1.7 ± 0.3, indicating that spectral ageing of CREs is important and that diffusive propagation dominates. The halo scale heights at 146 MHz decrease with increasing magnetic field strengths which is a signature of dominating synchrotron losses of CREs. On the other hand, the spectral index between 146 MHz and 1.5 GHz linearly steepens from the disk to the halo, indicating that advection rather than diffusion is the dominating CRE transport process. This issue calls for refined modelling of CRE propagation. Conclusions. Free–free absorption is probably important at and below about 150 MHz in the disks of edge-on galaxies. To reliably separate the thermal and nonthermal emission components, to investigate spectral steepening due to CRE energy losses, and to measure magnetic field strengths in the disk and halo, wide frequency coverage and high spatial resolution are indispensable.


2012 ◽  
Vol 2 (2) ◽  
pp. 73-78
Author(s):  
E. Rajasekhar ◽  
R. Jeevan Kumar ◽  
C. M. Subhan ◽  
P. Panduranga ◽  
T. Krishnamurthy

Present work is about the influence of Electromagnetic field [EMF] treatment on the improvement of groundnut seeds (Arachis hypogaea L) germination. The treatment consisted of different electromagnetic field strengths 2, 4, 7 and 10 milli Tesla [mT] in different exposure times 10, 20, 30 and 40 min. In every measurement, the relative humidity and room temperature were recorded. The germination [G] of seed in terms of percentage [% ], the stems length [SL] and roots length [RL] in millimeter [mm] at 6th day and 12th day after experiment, and the total weight [TW] in milligram at 12th day have been measured. Best results have been obtained for variants with exposure time of 30 min and field strength of 7 mT at south pole. Result obtained in the present investigation revealed that the energy absorbed by molecules was high at lower output strength and shorter exposure time improved biologicalfunctions, stimulation effect could be achieved.


1980 ◽  
Vol 35 (4) ◽  
pp. 461-463 ◽  
Author(s):  
O. M. Gradov ◽  
L. Stenflo

Abstract A beam of electromagnetic radiation can generate magnetic fields in plasmas. It is shown that those fields grow significantly when the incident radiation is sufficiently strong. We obtain expressions for the characteristic time of the growth of the fields as well as for their spatial distribution and point out a possible mechanism, which can lead to the formation of a quasi-stationary state. The maximum value of the magnetic field strength is estimated


2014 ◽  
Vol 71 (12) ◽  
pp. 1138-1143 ◽  
Author(s):  
Raimondas Buckus ◽  
Birute Strukcinskiene ◽  
Juozas Raistenskis

Background/Aim. During recent years, the widespread use of mobile phones has resulted in increased human exposure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. Methods. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. Results. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Conclusion. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.


2017 ◽  
Vol 19 (4) ◽  
pp. 384-390
Author(s):  
Matthew J. Pierson ◽  
Daniel Wehrmann ◽  
J. Andrew Albers ◽  
Najib E. El Tecle ◽  
Dary Costa ◽  
...  

OBJECTIVE Patients with ventriculoperitoneal (VP) shunts with programmable valves who would benefit from osseointegrated hearing devices (OIHDs) represent a unique population. The aim of this study was to evaluate the magnetic field strengths of 4 OIHDs and their interactions with 5 programmable VP shunt valves. METHODS Magnetic field strength was measured as a function of distance for each hearing device (Cochlear Baha 5, Cochlear Baha BP110, Oticon Ponto Plus Power, and Medtronic Sophono) in the following modes: inactive, active in quiet, and active in 60 decibels of background noise in the sound booth. The hearing devices were introduced to each shunt valve (Aesculap proGAV, Aesculap proGAV 2.0, Codman Hakim, Codman Certas, and Medtronic Strata II) also as a function of distance in these identical 3 settings. Each trial was repeated 5 times. Between each trial, the valves were assessed for a change in setting. Finally, using a skull model, the devices were introduced to each other in standard anatomical locations and the valves were assessed for a change in settings. RESULTS The maximum magnetic field strengths generated by the Cochlear Baha 5, BP110, and Oticon OIHDs were 1.1, 36.2, and 48.7 gauss (G), respectively. The maximum strength generated by the Sophono device was > 800 G. The magnetic field strength of the hearing devices decreased markedly with increasing distance from the device. The strength of the Sophono's magnetic attachment decreased to 34.8 G at 5 mm. The Codman Hakim, Codman Certas, and Medtronic Strata II valve settings changed when rotating the valves next to the Sophono abutment. No other changes in valve settings occurred in the distance or anatomical models for any other trials. CONCLUSIONS This is the first study evaluating the interaction between OIHDs and programmable VP shunt valves. The findings suggest that it is safe to use these devices together without having to switch to a nonprogrammable valve or move the shunt valve to a more distant location. Still, care should be taken if the Sophono device is used to ensure that the valve is ≥ 5 mm away from the magnetic attachment.


1967 ◽  
Vol 22 (12) ◽  
pp. 1890-1903
Author(s):  
F. Karger

In a previous paper31 discrepancies between theory and experiment were found on investigating the positive column in a curved magnetic field. The approximation derived in 31 for the torus drift in a weakly ionized magnetoplasma is therefore checked here (Part I) with a refined theory which also yields the transverse electric field strength. Experimentally, both the transverse electric fields and the density profiles in the DC discharge were determined in addition to the longitudinal electric field strength.The discrepancies occurring in 31 are ascribed to the fact that the plasma concentrates at the cathode end of the magnetic field coils, this effect having a considerable influence on the form of the transverse density profile and on the stability behaviour. Part II later will show how the influence of this concentration can be eliminated and what effect in the current-carrying toroidal plasma causes a marked reduction of the charge carrier losses.


Sign in / Sign up

Export Citation Format

Share Document