scholarly journals Modeling of a Dynamic Thermal Load Generated by a 7TeV Proton Beam Impacting the Beam Dump of the Large Hadron Collider at CERN

2018 ◽  
Vol 183 ◽  
pp. 01065
Author(s):  
Tobias Polzin ◽  
Antonio Peiillo-Marcone ◽  
Laura Bianchi ◽  
Marco Calviani ◽  
Matthias Frankl ◽  
...  

The two beam dumps of the Large Hadron Collider (LHC), made up mostly of low-density graphite, are responsible for absorbing the high-energy particle beams when ejected from the accelerator. In the frame-work of the project to improve the luminosity in the LHC, the beam intensity will be increased by a factor of around two in the coming years. The dominant load on the dump assembly is the energy deposited in the material by the 7 TeV proton beam. Thermomechanical simulations have to be performed to ensure the safe operation of the dump through assessing the integrity in the future. To date, the particle beam contains an average energy of 370 MJ, which is sent to the dump in a sweep movement within around 80 µs. Based on the large dimensions of the dump core and considering the highly dynamic nature of this load, an explicit code like LS-Dyna® was deemed to be best suited for these studies. This paper presents the methodology proposed to model the discrete time structure of the load, caused by the interaction between the particle beam and the dump. Results of the application of this technique, to determine the temperature, stresses and wave propagation on the downstream wall of this device, are described here. In addition to the methodology of the load application, the results of standard quasi-static material tests on the low-density graphite material in the beam dump are presented, to assess the general nature of the material behavior. These experiments will be the basis for a dynamic test campaign to construct a comprehensive material model, as the graphite used in this device has never been fully characterized under such loading conditions.

Synthese ◽  
2021 ◽  
Author(s):  
Sophie Ritson

AbstractThis paper provides an account of the nature of creativity in high-energy physics experiments through an integrated historical and philosophical study of the current and planned attempts to measure the self-coupling of the Higgs boson by two experimental collaborations (ATLAS and CMS) at the Large Hadron Collider (LHC) and the planned High Luminosity Large Hadron Collider (HL-LHC). A notion of creativity is first identified broadly as an increase in the epistemic value of a measurement outcome from an unexpected transformation, and narrowly as a condition for knowledge of the measurement of the self-coupling of the Higgs. Drawing upon Tal’s model-based epistemology of measurement (2012) this paper shows how without change to ‘readings’ (or ‘instrument indicators’) a transformation to the model of the measurement process can increase the epistemic value of the measurement outcome. Such transformations are attributed to the creativity of the experimental collaboration. Creativity, in this context, is both a product, a creative and improved model, and the distributed collaborative process of transformation to the model of the measurement process. For the case of the planned measurements at the HL-LHC, where models of the measurement process perform the epistemic function of prediction, creativity is included in the models of the measurement process, both as projected quantified creativity and as an assumed property of the future collaborations.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 118
Author(s):  
Eszter Frajna ◽  
Róbert Vértesi

The ALICE experiment at the Large Hadron Collider (LHC) ring is designed to study the strongly interacting matter at extreme energy densities created in high-energy heavy-ion collisions. In this paper we investigate correlations of heavy and light flavors in simulations at LHC energies at mid-rapidity, with the primary purpose of proposing experimental applications of these methods. Our studies have shown that investigating the correlation images can aid the experimental separation of heavy quarks and help understanding the physics that create them. The shape of the correlation peaks can be used to separate the electrons stemming from b quarks. This could be a method of identification that, combined with identification in silicon vertex detectors, may provide much better sample purity for examining the secondary vertex shift. Based on a correlation picture it is also possible to distinguish between prompt and late contributions to D meson yields.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Isaac Bonad ◽  
Richard Bates ◽  
Craig Batter ◽  
Fiona MacEwan ◽  
Simon Canfer ◽  
...  

The increase of the luminosity of the Large Hadron Collider (LHC) by 2020 requires the upgrade of the ATLAS inner tracker experiment. Expected to be used as support structures in the design of the inner tracker, the thermal and mechanical properties of POCOFOAM and ALLLCOMP foam needed to be well understood and dimensionally stable in order to allow efficient cooling and accurate track reconstruction. Thermal conductivities of these foams were measured experimentally together with the Young's modulus, yield, and shear stresses of POCOFOAM at low stress. Thermomechanical measurements of POCOFOAM were also achieved. This paper describes briefly the measurement systems used and reports the results obtained.


Sign in / Sign up

Export Citation Format

Share Document