scholarly journals Measurement of magnetic noise in magnetoimpedance sensing element

2018 ◽  
Vol 185 ◽  
pp. 02010
Author(s):  
Anatoliy S. Antonov ◽  
Nikita A. Buznikov ◽  
Timur T. Sultan-Zade ◽  
Alexey A. Shkliaev

A method for measurement of magnetic noise in magnetoimpedance sensing element is proposed. Glass-coated Co-based amorphous microwires with a slightly negative magnetostriction were used as the sensing element. The operation principle of the sensing element was based on the nonlinear off-diagonal magnetoimpedance, when field dependent higher harmonic components appeared in voltage in the pick-up coil wound around the microwire. The magnetic noise for the second harmonic in the pick-up coil voltage was studied. The dependences of the magnetic noise and the signal-to-noise ratio in the sensitive element on the current amplitude were analyzed. The noise performance of the second harmonic in the pick-up coil voltage was compared to that for a flux-gate sensing element.

2017 ◽  
Vol 812 ◽  
pp. 905-939 ◽  
Author(s):  
W. Zhao ◽  
H. A. Wolgamot ◽  
P. H. Taylor ◽  
R. Eatock Taylor

The first and higher harmonic components of the resonant fluid response in the gap between two identical fixed rectangular boxes are experimentally investigated in a wave basin. Gap response is excited by transient wave groups (being based on scaled versions of the autocorrelation function of sea-state spectra, representing NewWaves, the average shape of large waves in a sea state). Several different wave groups with different maximum surface elevations, spectral peak frequencies and bandwidths are used, while the bilge shape of the boxes and approach angle of the waves are also varied. Unlike a simple regular wave, it is complicated to separate the harmonic components for a transient wave group due to nonlinear wave–wave and wave–structure interactions. A four-phase combination methodology is used to separate the first four harmonic components, and this also allows higher harmonic components to be isolated with simple digital frequency filtering. Harmonic components up to 14th order in the incident wave amplitude have been extracted. It is shown that for an incident group with appropriate frequency content, the linear gap response may be substantially smaller than the second harmonic component, which is strongly driven via quadratic coupling of the linear terms from the incident wave and occurs in the gap resonant modes. Double frequency excitation may have important practical implications for offshore operations. Fourth and zeroth (long-wave) harmonics in the gap are further driven via quadratic coupling of the second harmonic itself. Linear damping coefficients for the first few modes of the gap resonant response are derived from measured time series using a numerical fit and shown to be higher than those from linear diffraction calculations.


1957 ◽  
Vol 8 (3) ◽  
pp. 215-225 ◽  
Author(s):  
Sharad A. Patel ◽  
Joseph Kempner

SummaryThe influence of higher-harmonic deflection components on the creep-buckling characteristics of an idealised H-section column is investigated. The creep properties of the material of the column are defined by a simple power-function creep law. The results show that higher-harmonic deflection components reduce the column lifetime significantly only when their initial amplitudes, as well as the initial amplitude of the first harmonic component, are very large. Furthermore, it is shown that second-harmonic components have a much smaller effect on the column behaviour than do third-harmonic components.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Jianqiang Shi ◽  
Xiaojun Tang ◽  
Zhenqing Wang ◽  
Mingfang Shi ◽  
Wei Zhao

Direct numerical simulation (DNS) of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.


2020 ◽  
Author(s):  
Li Wang ◽  
Feng Zhang ◽  
Kechao Lu ◽  
Mohammed Abdulaziz ◽  
Chao Li ◽  
...  

Abstract Background: Cardiopulmonary activities reflect the ability of the human heart to pump blood and the lungs to inhale oxygen. Thus, a device could simultaneously measure electro-cardiac signal and respiratory pressure could provide vital signs for predicting early warning of cardio-pulmonary function-related chronic diseases such as cardiovascular disease, and respiratory system disease. Results: In this study, a flexible device integrated with piezo-resistive sensing element and voltage-sensing element was developed to simultaneously measure human respiration and electro-cardiac signal (including respiratory pressure, respiration frequency, and respiration rhythm; electro-cardio frequency, electro-cardio amplitude, and electro-cardio rhythm). When applied to the measurement of respiratory pressure, the piezo-resistive performance of the device was enhanced by nano-copper modification, which detection limitation of pressure can reduce to 100 Pa and the sensitivity of pressure can achieve to 0.053 ± 0.00079 kPa-1. In addition, the signal-to-noise ratio during bio-electrical measurement was increased to 10.7 ± 1.4, five times better than that of the non-modified device. Conclusion: This paper presents a flexible device for the simultaneous detection of human respiration and cardiac electrical activity. To avoid interference between the two signals, the layout of the electrode and the strain sensor was optimized by FEA simulation analysis. To improve the piezo-resistive sensitivity and bio-electric capturing capability of the device, a feather-shaped nano-copper was modified onto the surface of carbon fiber. The operation simplicity, compact size, and portability of the device open up new possibilities for multi-parameter monitoring.


2019 ◽  
Vol 1 (2) ◽  
pp. 117-125
Author(s):  
Hyunjo Jeong ◽  
Shu-zeng Zhang ◽  
Xiong-bing Li

Abstract In nonlinear acoustic harmonic generation in solids with stress-free boundaries, such a boundary is known to destructively change the second harmonic generation, and the pulse-echo method is not practically applicable. Focused beams have often been used for fluid nonlinearity and biomechanical imaging in pulse-echo test setups. This paper considers the focused beam fields of linear phased-array transducers to ensure that pulse-echo harmonic generation can be applied to solids with stress-free boundaries. The fundamental and second-harmonic beam fields that are focused and reflected at the stress-free and rigid boundaries are calculated and their properties are investigated in terms of the received average fields. The phase difference between the two second-harmonic components after reflection from the boundary—that is, the reflected and the newly generated second harmonic—is emphasized. The phase difference is used to explain the improved and accumulated second harmonic observed in the simulation results.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 434 ◽  
Author(s):  
SungJoon Kim ◽  
Sri Ramulu Torati ◽  
Artem Talantsev ◽  
ChangYeop Jeon ◽  
SungBae Lee ◽  
...  

Magnetic sensors have great potential for biomedical applications, particularly, detection of magnetically-labeled biomolecules and cells. On the basis of the advantage of the planar Hall effect sensor, which consists of improved thermal stability as compared with other magnetic sensors, we have designed a portable biosensor platform that can detect magnetic labels without applying any external magnetic field. The trilayer sensor, with a composition of Ta (5 nm)/NiFe (10 nm)/Cu (x = 0 nm~1.2 nm)/IrMn (10 nm)/Ta (5 nm), was deposited on a silicon wafer using photolithography and a sputtering system, where the optimized sensor sensitivity was 6 μV/(Oe∙mA). The detection of the magnetic label was done by comparing the signals obtained in first harmonic AC mode (1f mode) using an external magnetic field and in the second harmonic AC mode (2f mode) with a self-field generated by current passing through the sensor. In addition, a technique for the β-amyloid biomarker-based antibody-antigen sandwich model was demonstrated for the detection of a series of concentrations of magnetic labels using the self-field mode method, where the signal-to-noise ratio (SNR) was high. The generated self-field was enough to detect an immobilized magnetic tag without an additional external magnetic field. Hence, it could be possible to reduce the device size to use the point-of-care testing using a portable circuit system.


2020 ◽  
Vol 42 (2) ◽  
pp. 57-73
Author(s):  
Suya Han ◽  
Yufeng Zhang ◽  
Keyan Wu ◽  
Bingbing He ◽  
Kexin Zhang ◽  
...  

Complete and accurate separation of harmonic components from the ultrasonic radio frequency (RF) echo signals is essential to improve the quality of harmonic imaging. There are limitations in the existing two commonly used separation methods, that is, the subjectivity for the high-pass filtering (S_HPF) method and motion artifacts for the pulse inversion (S_PI) method. A novel separation method called S_CEEMDAN, based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, is proposed to adaptively separate the second harmonic components for ultrasound tissue harmonic imaging. First, the ensemble size of the CEEMDAN algorithm is calculated adaptively according to the standard deviation of the added white noise. A set of intrinsic mode functions (IMFs) is then obtained by the CEEMDAN algorithm from the ultrasonic RF echo signals. According to the IMF spectra, the IMFs that contain both fundamental and harmonic components are further decomposed. The separation process is performed until all the obtained IMFs have been divided into either fundamental or harmonic categories. Finally, the fundamental and harmonic RF echo signals are obtained from the accumulations of signals from these two categories, respectively. In simulation experiments based on CREANUIS, the S_CEEMDAN-based results are similar to the S_HPF-based results, but better than the S_PI-based results. For the dynamic carotid artery measurements, the contrasts, contrast-to-noise ratios (CNRs), and tissue-to-clutter ratios (TCRs) of the harmonic images based on the S_CEEMDAN are averagely increased by 31.43% and 50.82%, 18.96% and 10.83%, as well as 34.23% and 44.18%, respectively, compared with those based on the S_HPF and S_PI methods. In conclusion, the S_CEEMDAN method provides improved harmonic images owing to its good adaptivity and lower motion artifacts, and is thus a potential alternative to the current methods for ultrasonic harmonic imaging.


1992 ◽  
Vol 8 (1) ◽  
pp. 3-8 ◽  
Author(s):  
Samuel Sokol ◽  
Vance Zemon ◽  
Anne Moskowitz

AbstractThe development of lateral inhibitory interactions in the infant visual system, as reflected by the visual-evoked potential (VEP), was studied using a radial, asymmetrical windmill-dartboard stimulus. This contrast-reversing stimulus generates VEP responses with a strong fundamental frequency component and an attenuated second harmonic component (relative to that obtained using a symmetrical stimulus). These two harmonic components reflect distinct phenomena, and appear to be the result of short-range (the fundamental) and long-range (attenuated second harmonic) lateral inhibitory interactions elicited by differential luminance-modulation of contiguous spatial regions. We studied the development of the short-and long-range interactions at 100% and 30% contrast in human infants using both VEP amplitude and phase measures. Attenuation of the second harmonic (long-range interactions) was adult-like by 8 weeks of age while the strength of the fundamental (short-range interactions) was adult-like by 20 weeks suggesting a differential development of long-range and short-range interactions. In contrast, corresponding phase data indicated significant immaturities at 20 weeks of age for both the short-and long-range components.


Sign in / Sign up

Export Citation Format

Share Document