scholarly journals Magnetic nanoparticles preparation by chemical reduction for biomedical applications

2019 ◽  
Vol 201 ◽  
pp. 01002
Author(s):  
Zhazgul Kelgenbaeva ◽  
Bektemir Murzubraimov ◽  
Artem Kozlovsky ◽  
Ruslan Adil Akai Tegin ◽  
Ainur Turdubai kyzy ◽  
...  

This work presents Fe3O4 and AgFe nanoparticles with an average diameter of 25 and 15 nm synthesized by chemical reduction of corresponding salts under a mild condition. Cubic crystal structure and spherical shape of the nanoparticles were studied by X-ray diffraction, Field emission SEM and energy-dispersive spectroscopy analysis. For biomedical applications, the nanoparticles were tested against bacteria E.coli and results revealed AgFe nanoparticles’ antibacterial activity by forming lysis zone in scale of 0.5 mm.

2021 ◽  
pp. 096739112110384
Author(s):  
Christian Chapa González ◽  
Javier Ulises Navarro Arriaga ◽  
Perla Elvia García Casillas

The physicochemical properties of the nanoparticle surface determine the performance of nanocomposites in biomedical applications such as their biodistribution and pharmacokinetics. The physicochemical properties of chitosan, such as apparent charge density and solubility, are pH dependent. Similarly, Fe3O4 nanoparticles are susceptible to variations in their physicochemical properties due to changes in pH. In this work, we evaluated the physicochemical properties of chitosan–magnetite nanocomposites that were suspended at pH 7.0, 9.0, and 11.0 to determinate the effect on particle size, zeta potential, and mass percentage of the polymeric coating, in addition to the crystalline phase and magnetic properties of magnetite phase. X-ray diffraction results exposed that the present phase was magnetite with no other phases present and that the crystallite size was between 10.8 and 14.1 nm. Fourier transform infrared verified the chitosan functional groups in treated samples while the percentage of mass determined by TGA found to be nearly 9%. Scanning electron microscopy micrographs corroborated the spherical shape of the bare and chitosan-coated nanoparticles. Dynamic light scattering results showed that chitosan coating modifies the zeta potential, going from a potential of −11.8 mV for bare particles to −3.0 mV (pH 11). Besides, vibrating sample magnetometer measurements showed that coercivity remained very low, which is desirable in biomedical applications.


2008 ◽  
Vol 63 (5) ◽  
pp. 543-547 ◽  
Author(s):  
Inés Viera ◽  
Laura Domínguez ◽  
Javier Ellena ◽  
María H. Torre

This work reports the synthesis and characterization of a new copper complex with nadolol, a betablocker aminoalcohol. The stoichiometry found was Na[Cu(nadololate)(CO3)] · H2O. Electronic and vibrational spectroscopy analysis was performed, and the crystal structure of Na[Cu(nadololate)-(CO3)] · H2O was determined by X-ray diffraction.


2017 ◽  
Vol 65 (1) ◽  
pp. 79-84
Author(s):  
P. Sarmphim ◽  
S. Soontaranon ◽  
C. Sirisathitkul ◽  
P. Harding ◽  
S. Kijamnajsuk ◽  
...  

Abstract Annealed iron-platinum (FePt) is ferromagnetic in a nanoscale regime which is necessary for energy and data storage, whereas the as-synthesized form of FePt-based nanoparticles exhibits superparamagnetism useful for biomedical applications. In this study, as-synthesized nanosuspensions from the reaction of Pt(acac)2 with Fe(acac)3 and Fe(hfac)3 are compared. X-ray diffraction (XRD) peaks for both samples are assigned to the FePt3 phase. As shown by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), nanoparticles synthesized by using Fe(acac)3 have a smaller average diameter, but larger polydispersity index and particle agglomerations. On the other hand, the nanoparticles synthesized by using Fe(hfac)3 can self-assemble into a longer range of patterned monolayer. Dynamic light scattering (DLS), measuring the size of cluster of nanoparticles as well as oleic acid and oleylamine at their surface, confirms that larger agglomerations in the sample were synthesized by using Fe(acac)3. In addition to the size distribution, magnetic properties were influenced by the composition of these nanoparticles.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1409
Author(s):  
Gerson A. C. Lopes ◽  
Daniel Atencio ◽  
Javier Ellena ◽  
Marcelo B. Andrade

The roméite-group is part of the pyrochlore-supergroup and comprises cubic oxides of A2B2X6Y formula in which Sb5+ predominates in the B-site. The A and Y main occupants determine different minerals in the group and are important for the discovery of new mineral species. Two different roméite-group mineral samples were analysed by electron microprobe analysis (EMPA), Raman spectroscopy and single-crystal X-ray diffraction (XRD). The first sample is from Prabornaz Mine (locality of the original roméite), Saint Marcel, Valle d’Aosta, Italy, whereas the other one occurs in Kalugeri Hill, Babuna Valley, Jakupica Mountains, Nezilovo, Veles, Macedonia. Sample 1 was identified as fluorcalcioroméite, and sample 2 as hydroxycalcioroméite. Both samples belong to the cubic crystal system, space group Fd3¯m, Z = 8, where a = 10.2881(13) Å, V = 1088.9(4) Å3 for sample 1, and a = 10.2970(13) Å, V = 1091.8(4) Å3 for sample 2. The crystal structure refinements converged to (1) R1 = 0.016, wR2 = 0.042; and (2) R1 = 0.023, wR2 = 0.049. Bond-valence calculations validated the crystal structure refinements determining the correct valences at each crystallographic site. Discrepancies observed in the Sb5+ bond-valence calculations were solved with the use of the proper bond valence parameters. The resulting structural formulas are (Ca1.29Na0.55□0.11Pb0.05)Σ=2.00(Sb1.71Ti0.29)Σ=2.00[O5.73(OH)0.27]Σ=6.00[F0.77O0.21(OH)0.02]Σ=1.00 for sample 1, and (Ca1.30Ce0.51□0.19)Σ=2.00(Sb1.08Ti0.92)Σ=2.00O6.00[(OH)0.61O0.21F0.18]Σ=1.00 for sample 2. The Raman spectra of the samples exhibited the characteristic bands of roméite-group minerals, the most evident corresponding to the Sb-O stretching at around 510 cm−1.


2016 ◽  
Vol 7 ◽  
pp. 184798041668080
Author(s):  
Rongfang Wang ◽  
Xingming Wei ◽  
Pingfang Tao ◽  
Qinmin Wei ◽  
Pei Zhang ◽  
...  

Cadmium sulfur nanocrystals doped with the rare earth ion Tb3+ were synthesized using an easy aqueous method. Powder X-ray diffraction was used for the crystallography analysis of the nanocrystals. Results showed that cadmium sulfur: Tb3+ quantum dots had a cubic crystal structure. Effects of the pH of the original solution and Tb3+-dopant amount on luminescence properties of cadmium sulfur quantum dots were also systematically investigated. The luminescence properties of cadmium sulfur quantum dots were further improved using an appropriate Tb3+-dopant amount.


2011 ◽  
Vol 694 ◽  
pp. 293-297
Author(s):  
Zhi Gang Wu

Pure metallic nickel nanoparticles, spherical shape have been successfully synthesized by the chemical reduction of nickel chloride with hydrazine at room temperature without any protective agent and inert gas protection. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to characterize the nickel nanoparticles and of course, the magnetic properties were also measured. This synthetic method is proven to be simple and very facile. And it’s very interesting that the obtained nickel nanoparticle can be isolated in solid states and stabilized for several months in atmosphere.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dena Dorniani ◽  
Aminu Umar Kura ◽  
Samer Hasan Hussein-Al-Ali ◽  
Mohd Zobir Bin Hussein ◽  
Sharida Fakurazi ◽  
...  

The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared with 31 nm and 35 nm after coating with polyethylene glycol-GA (FPEGG) and polyvinyl alcohol-GA (FPVAG), respectively. Thermogravimetric analyses proved that after coating the thermal stability was markedly enhanced. Magnetic measurements and Fourier transform infrared (FTIR) revealed that superparamagnetic iron oxide nanoparticles could be successfully coated with two polymers (PEG and PVA) and gallic acid as an active drug. Release behavior of gallic acid from two nanocomposites showed that FPEGG and FPVAG nanocomposites were found to be sustained and governed by pseudo-second-order kinetics. Anticancer activity of the two nanocomposites shows that the FPEGG demonstrated higher anticancer effect on the breast cancer cell lines in almost all concentrations tested compared to FPVAG.


2001 ◽  
Vol 16 (4) ◽  
pp. 914-921 ◽  
Author(s):  
Paul R. Markworth ◽  
R. P. H. Chang ◽  
Y. Sun ◽  
G. K. Wong ◽  
J. B. Ketterson

Continuous epitaxial films of cuprous oxide (Cu2O) have been formed by the thermal oxidation of 1.5-μm-thick Cu metal films deposited on MgO(110) substrates. These films melted at 1118 °C in air, in agreement with equilibrium phase diagrams. Upon cooling from the liquid, a highly crystalline, epitaxial, 2.5-μm-thick Cu2O film was formed. X-ray diffraction spectroscopy revealed that the Cu2O film crystal structure was orthorhombically distorted from the bulk cubic crystal structure. High-resolution transmission electron microscopy showed that the film is coherent, and energy dispersive x-ray spectroscopy showed that interdiffusion is limited to the interface. These results suggest that a new epitaxially stabilized phase of Cu2O has been formed.


2014 ◽  
Vol 925 ◽  
pp. 195-199 ◽  
Author(s):  
Reza Shabannia ◽  
Abu Hassan Haslan

Aligned ZnO nanorods were synthesized on a polyethylene naphthalate (PEN) substrates using a chemical bath deposition method. The growth temperature and precursor concentration were 95 °C and 0.025 M, respectively. The effects of growth duration (2 h to 8 h) on the optical and structural properties of the obtained ZnO nanorods on seed layer ZnO/PEN substrate were then investigated using X-ray diffraction, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL) spectroscopy at room temperature. The high intensity of (002) peak compared with (100) and (101) in the X-ray diffraction (XRD) pattern demonstrated that the ZnO nanorods grown for 6.5 h had more vertical higher crystal quality than the samples grown for other durations. The average diameter of ZnO nanorods grown on PEN substrates increased from 19 nm to 45 nm with increased growth duration from 2 h to 8 h, respectively.


2016 ◽  
Vol 869 ◽  
pp. 940-945 ◽  
Author(s):  
Raul Oliveira de Araújo ◽  
Marília Afonso Rabelo Buzalaf ◽  
Carlos Roberto Grandini

Titanium alloys are constantly being studied for possible applications as biomaterials. However, studies suggest that aluminum and vanadium, when used in the human body over long period of time, are associated with adverse reactions and allergies. So there is a need to develop alloys that are both free of these elements and have mechanical properties that are good as or better than the Ti-6Al-4V alloy. In this paper, alloys were prepared from the Ti-10Mo-xZr system (x = 5, 10, 15, 20 wt%). These were characterized by their chemical composition via energy dispersive spectroscopy (EDS), density, x-ray diffraction, optical microscopy, and microhardness. The results showed that the alloys have the desired stoichiometry and a good homogeneity structure. Microstructure analyses indicated the predominance of the β phase with a body-centered cubic crystal structure and that the addition of substitutional elements caused the solid solution to harden.


Sign in / Sign up

Export Citation Format

Share Document