Growth of Aligned ZnO Nanorods Grown on Polyethylene Naphthalate Substrates: Effect of the Growth Duration

2014 ◽  
Vol 925 ◽  
pp. 195-199 ◽  
Author(s):  
Reza Shabannia ◽  
Abu Hassan Haslan

Aligned ZnO nanorods were synthesized on a polyethylene naphthalate (PEN) substrates using a chemical bath deposition method. The growth temperature and precursor concentration were 95 °C and 0.025 M, respectively. The effects of growth duration (2 h to 8 h) on the optical and structural properties of the obtained ZnO nanorods on seed layer ZnO/PEN substrate were then investigated using X-ray diffraction, field-emission scanning electron microscopy (FESEM), and photoluminescence (PL) spectroscopy at room temperature. The high intensity of (002) peak compared with (100) and (101) in the X-ray diffraction (XRD) pattern demonstrated that the ZnO nanorods grown for 6.5 h had more vertical higher crystal quality than the samples grown for other durations. The average diameter of ZnO nanorods grown on PEN substrates increased from 19 nm to 45 nm with increased growth duration from 2 h to 8 h, respectively.

2009 ◽  
Vol 63 (6) ◽  
Author(s):  
Yan Li ◽  
Chuan-Sheng Liu ◽  
Yun-Ling Zou

AbstractZnO nano-tubes (ZNTs) have been successfully synthesized via a simple hydrothermal-etching method, and characterized by X-ray diffraction, field emission scanning electron microscopy and room temperature photoluminescence measurement. The as-synthesized ZNTs have a diameter of 500 nm, wall thickness of 20–30 nm, and length of 5 µm. Intensity of the plane (0002) diffraction peak, compared with that of plane (10$$ \bar 1 $$0) of ZNTs, is obviously lower than that of ZnO nano-rods. This phenomenon can be caused by the smaller cross section of plane (0002) of the nano-tubes compared with that of other morphologies. On basis of the morphological analysis, the formation process of nano-tubes can be proposed in two stages: hydrothermal growth and reaction etching process.


2020 ◽  
Vol 56 (2) ◽  
pp. 269-277
Author(s):  
V.E. Sokol’skii ◽  
D.V. Pruttskov ◽  
O.M. Yakovenko ◽  
V.P. Kazimirov ◽  
O.S. Roik ◽  
...  

Anorthite and gehlenite crystalline structure and short-range order of anorthite melt have been studied by X-ray diffraction in the temperature range from room temperature up to ~ 1923 K. The corresponding anorthite and gehlenite phases were identified as well as amorphous component for anorthite samples having identical shape to XRD pattern of the anorthite melt. The structure factor and the radial distribution function of atoms of the anorthite melt were calculated from the X-ray high-temperature experimental data. The partial structural parameters of the short-range order of the melt were reconstructed using Reverse Monte Carlo simulations.


2020 ◽  
Vol 27 (08) ◽  
pp. 1950198
Author(s):  
ABDULQADER D. FAISAL ◽  
MOHAMMAD O. DAWOOD ◽  
HASSAN H. HUSSEIN ◽  
KHALEEL I. HASSOON

In this work, ZnO nanorods (ZnO NRs) were successfully synthesized on FTO-glass via hydrothermal technique. Two steps were followed to grow ZnO NRs. In the first step, the seed layer of ZnO nanocrystals was deposited by using a drop cast method. The second step was represented by the hydrothermal growth of ZnO NRs on a pre-coated FTO- glass with the seed layer. The hydrothermal growth was conducted at 90∘C for 2[Formula: see text]h. The resulted structure, morphology and optical properties of the produced layers were analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) and UV-visible spectrophotometer, respectively. The analysis confirmed that the ZnO NRs grown by the hydrothermal method have a hexagonal crystal structure which was grown randomly on the FTO surface. The crystallite size was recorded 50[Formula: see text]nm and a slight microstrain (0.142%) was calculated. The bandgap was found to be in the range of 3.14–3.17[Formula: see text]eV. The ZnO NRs have a high density and large aspect ratio. A pH sensor with high sensitivity was fabricated using a two-electrode cell configuration. The ZnO NRs sensor showed the sensitivity of [Formula: see text]59.03[Formula: see text]mV/pH, which is quite promising and close to the theoretical value ([Formula: see text]59.12[Formula: see text]mV/pH).


2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.


2015 ◽  
Vol 773-774 ◽  
pp. 1096-1100 ◽  
Author(s):  
Muhammad Mubashir ◽  
Yin Fong Yeong ◽  
Lau Kok Keong ◽  
Azmi bin Mohd Shariff

In the present work, DDR3 zeolite crystals were synthesized using two different methods. The silica sources used to synthesize DDR3 crystals were tetramethoxysilane (TMOS) and Ludox-40. The resultant samples were characterized using X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The XRD results showed that the peaks representing DDR3 structure were not obtained for the sample synthesized in 5 days at room temperature with ultrasonic pre-treatment of 3h using Ludox-40 as silica source. On the other hand, the XRD pattern obtained for the sample synthesized in 25 days at 160 o C using TMOS as a silica source were similar with the XRD peaks reported in the literature. From these results, it can be concluded that the synthesis conditions of 25 days at 160 o C using TMOS as silica source were the favorable conditions in obtaining DDR3 crystal structure.


2010 ◽  
Vol 663-665 ◽  
pp. 1325-1328 ◽  
Author(s):  
De Hui Sun ◽  
De Xin Sun ◽  
Yu Hao

The superparamagnetic NiFe2O4 nanoparticles were synthesized using a hydrothermal technology through P123 sphere micelles as ‘nanoreactor’ in this work. Their morphologies, structures, surface properties and magnetism were characterized by FE-SEM, XRD, FTIR, and VSM, respectively. The nickel ferrite samples are nearly spherical and homogeneous nanoparticles with average size range of about 50-120 nm. They possess superparamagnetism at room temperature and higher saturation magnetization. X-ray diffraction (XRD) pattern confirms that the samples belong to the cubic crystal system with an inverse-spinel structure. Fourier transform infrared (FTIR) absorption spectrum indicates that the NiFe2O4 nanoparticles are stabilized by the P123 adsorbed on the surface of nanoparticles.


2013 ◽  
Vol 538 ◽  
pp. 242-245 ◽  
Author(s):  
Bao Gai Zhai ◽  
Qing Lan Ma ◽  
Rui Xiong ◽  
Yuan Ming Huang

Zn/ZnO core-shell structured composites were firstly synthesized by water-boiling method using induction cooker and electric cooker. The synthesized Zn/ZnO core-shell structures were characterized with X-ray diffraction (XRD), scanning electronic microscopy (SEM) and photoluminescence (PL) spectrophotometer, respectively. The XRD pattern confirms that the shells of the Zn/ZnO core-shell composites are composed of wurtzite ZnO crystals. Based on SEM analysis, the Zn/ZnO core-shell structures formed by intermittent boiling under induction cooker show a tendency for spherical morphology with stacked and bending ZnO shells while the ones formed by continuous boiling under electric cooker exhibit a spherical morphology with the irregular ZnO nanorods on the surface of Zn spheres, and the continuous boiling under electric cooker can promote the peeling and regeneration of ZnO shells on the surface of Zn cores. The PL spectra of the Zn/ZnO core-shell structures have been recorded at room temperature and observed two peaks around 379 nm and 538 nm. However, the defect emission is much stronger than the UV emission in the Zn/ZnO core-shell structures synthesized under electric cooker.


2003 ◽  
Vol 18 (12) ◽  
pp. 2837-2844 ◽  
Author(s):  
Yung-Kuan Tseng ◽  
Hsu-Cheng Hsu ◽  
Wen-Feng Hsieh ◽  
Kuo-Shung Liu ◽  
I-Cherng Chen

Uniform hexagonal prismatic zinc oxide rods were grown over the entire alumina substrate at 550°C using a two-step oxygen injection process, whether the substrates were coated with a catalyst or not. X-ray diffraction showed that all of the depositions exhibited a preferred orientation in the (002) plane. The influence of oxygen concentration was investigated by changing the oxygen flow rate. Oxygen concentration affected the size of ZnO nanorods, especially the diameter. The ZnO nanorods were further checked using high-resolution transmission electron microscopy, photoluminescence, Raman spectroscopy, and room-temperature ultraviolet lasing. The results showed that the rods were single crystals and had excellent optical properties. By observing the growth process, we found that the diameter increased slowly, but the longitudinal growth rate was very high. The growth of ZnO nanorods revealed that the uniform hexagonal prismatic ZnO nanorods were synthesized through vapor deposition growth and a self-catalyzed vapor–liquid–solid (VLS) process.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550050 ◽  
Author(s):  
Kieu Loan Phan Thi ◽  
Lam Thanh Nguyen ◽  
Anh Tuan Dao ◽  
Nguyen Huu Ke ◽  
Vu Tuan Hung Le

In this paper, ZnO nanorods were grown by wet chemical method on p-Si (100) substrate to form n-ZnO nanorods/p-Si (100) heterojunction. The optical, electrical, structural properties of n-ZnO nanorods/p-Si(100) heterojunction were analyzed by the photoluminescence (PL) spectroscopy, [Formula: see text]–[Formula: see text] measurement, X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The room temperature PL spectra reveal the good optical property of the heterojunction with strong UV peak at 385[Formula: see text]nm. The ZnO nanorods were vertically well-aligned on p-Si (100) and had an average height of about 1.6[Formula: see text][Formula: see text]m. The n-ZnO nanorods/p-Si (100) heterojunction also exhibits diode-like-rectifying-behavior.


2014 ◽  
Vol 24 (3S1) ◽  
pp. 90-94 ◽  
Author(s):  
Le Tuan Tu ◽  
Luu Van Thiem ◽  
Pham Duc Thang

The magnetic properties in Co-Ni-P nanowires arrays with diameter of 200 nm were investigated. All the samples were prepared by electrodeposition method with pH of 5.5 and at room temperature. During the deposition, a magnetic field in range of 0 - 750 Oe was applied parallel to the wires axis. The crystalline structure and morphology of the samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The hysteresis loops were measured at room temperature using vibrating sample magnetometry (VSM). The mixture of hcp phases of the Co-Ni-P based nanowires has been indicated by the XRD pattern. The obtained results show that with 750 Oe magnetic field applied during deposition we can obtain maximum coercivity value (2180 Oe). The \(M_{r}/M_{s}\) ratio was rapid increased when the magnetic field changed from 0 Oe to 750 Oe.


Sign in / Sign up

Export Citation Format

Share Document