scholarly journals Cosmic ray e± at high energy

2019 ◽  
Vol 208 ◽  
pp. 04001 ◽  
Author(s):  
Kfir Blum ◽  
Annika Reinert

There is a commonly expressed opinion in the literature, that cosmic-ray (CR) e+ come from a primary source, which could be dark matter or pulsars. In these proceedings we review some evidence to the contrary: namely, that e+ come from secondary production due to CR nuclei scattering on interstellar matter. We show that recent measurements of the total e± flux at E ≲ 3 TeV are in good agreement with the predicted flux of secondary e±, that would be obtained if radiative energy losses during CR propagation do not play an important role. If the agreement between data and secondary prediction is not accidental, then the requirement of negligible radiative energy losses implies a very short propagation time for high energy CRs: tesc ≲. 105 yr at rigidities R ≳ 3 TV. Such short propagation history may imply that a recent, near-by source dominates the CRs at these energies. We review independent evidence for a transition in CR propagation, based on the spectral hardening of primary and secondary nuclei around R ~ 100 GV. The transition rigidity of the nuclei matches the rigidity at which the e+ flux saturates its secondary upper bound.

2020 ◽  
Vol 500 (4) ◽  
pp. 4573-4577
Author(s):  
Yiwei Bao ◽  
Yang Chen ◽  
Siming Liu

ABSTRACT DAMPE observation on the cosmic ray electron spectrum hints a narrow excess at ∼1.4 TeV. Although the excess can be ascribed to dark matter particles, pulsars and pulsar wind nebulae are believed to be more natural astrophysical origins: electrons injected from nearby pulsars at their early ages can form a bump-like feature in the spectrum due to radiative energy losses. In this paper, with a survey of nearby pulsars, we filter out four pulsars that may have notable contributions to ∼1.4 TeV cosmic ray electrons. Among them, PSR J0855−4644 has a spin-down luminosity more than 50 times higher than others and presumably dominates the electron fluxes from them. X-ray observations on the inner compact part (which may represent a tunnel for the transport of electrons from the pulsar) of PWN G267.0−01.0 are then used to constrain the spectral index of high-energy electrons injected by the pulsar. We show that high-energy electrons released by PSR J0855−4644 could indeed reproduce the 1.4 TeV spectral feature hinted by the DAMPE with reasonable parameters.


Recent experiments have extended the knowledge of the flux and energy spectra of individual cosmic-ray components to much higher energies than had previously been accessible. Both electron and nuclear components show a behaviour at high energy which is unexpected, and which carries information regarding the sources and the propagation of particles between sources and observer. Electromagnetic interactions which are suffered by the electrons in interstellar space should steepen their spectrum, a steepening that would reveal the average lifetime a cosmic-ray particle spends in the galaxy. Measurements up to 1000 GeV show no such steepening. It was discovered that the composition of the nuclear species which is now measured up to 100 GeV/nucleon changes with energy. This change indicates traversal of less interstellar matter by the high energy particles than by those of lower energy. We discuss the experimental evidence and its implication.


1981 ◽  
Vol 94 ◽  
pp. 365-366
Author(s):  
J. Pérez-Peraza ◽  
S. S. Trivedi

The role of Coulombian energy losses in cosmic ray physics is generally over simplified by using the Bethe-Block formulation which does not depend explicitly on the temperature of the medium. The role of low energy particles is usually neglected, as a result of the over estimation of losses when the temperature of the medium is ignored. A deep analysis of Coulombian losses may raise the importance of these particles in the dynamics of the Galaxy. In fact, the deceleration of these particles is determined by charge interchange processes with the target ions and electrons, which energy dependence is roughly the inverse of ionisation losses. Even high energy particles may be subject to this kind of deceleration if the temperature is very high. The consideration of Coulombian losses through all energy ranges with explicit dependence on the temperature has been discussed by Perez and Lara (1979): a fully ionized medium of hydrogen has been assumed to prevail in most of cosmic ray sources. One kind of the implications is the determination of particle composition. It is claimed that a given kind of ion is preferentially accelerated or depleted depending on whether the acceleration is higher or lower than the deceleration rate at the beginning of the acceleration of thermal material. Species which undergo depletion are accelerated only if their energy is higher than that for which both rates are equated (Ec,E′c and E′c′) in such a way that only those of the hot tails of their thermal distributions are effectively accelerated. These will appear depleted relative to other species which are free accelerated because their deceleration rates at low energies are lower than the acceleration rate. It can be noted in the next figures, that if both rates would not intersect at the beginning of the acceleration, they would not join at higher energies because the acceleration rate grows faster with energy than the deceleration rate. Three arbitrary acceleration rates are used for illustration: Fermi-2nd order (αβW), Betatron or adiabatic heating (αβ2W) and shock wave acceleration (αW), where α, β and W are the efficiency, the particles velocity and the total energy per nucleon respectively. In Fig. 1 it can be seen that this selective acceleration relative to Coulombian losses is defined at different energy levels depending on the kind of acceleration involved. Since the main effect of the temperature on the losses at the beginning of the acceleration is through the local charge states of the ions, the sequence of energy losses among different species is highly assorted. This is translated in a great amount of possibilities of particle enhancements and depletions according to the temperature of the source and the kind of acceleration operating therein. If particles under go acceleration in a fully stripped state, the sequence of losses at all energy levels is such that the heavy elements are depleted in relation with the lighter ones; same is the situation, what-ever the initial charge state, for high energy particles in the range of ionisation. It may be concluded, on basis to the observational enhancement of heavy cosmic rays, that hot regions are not likely sources, and that acceleration initiates from thermal energies. On Fig. 2 it is illustrated the enhancement of Fe over 0 in solar flare conditions, on basis to the charge states as given by Jordan (1969). If α < 2.71 s−1 both elements would be depleted, whereas if α>3.45 s−1 both would be preferentially accelerated.


2019 ◽  
Vol 210 ◽  
pp. 02002
Author(s):  
Lorenzo Cazon ◽  

Extensive air showers are complex objects, resulting of billions of particle reactions initiated by single cosmic ray at ultra-high-energy. Their characteristics are sensitive both to the mass of the primary cosmic ray and to the details of hadronic interactions. Many of the interactions that determine the shower features occur in kinematic regions and at energies beyond those tested by human-made accelerators. We will report on the measurement of the proton-air cross section for particle production at a center-of-mass energy per nucleon of 39 TeV and 56 TeV. We will also show comparisons of post-LHC hadronic interaction models with shower data by studying the moments of the distribution of the depth of the electromagnetic maximum, the number and production depth of muons in air showers, and finally a parameter based on the rise-time of the surface detector signal, sensitive to the electromagnetic and muonic component of the shower. While there is good agreement found for observables based on the electromagnetic shower component, discrepancies are observed for muon-sensitive quantities.


1971 ◽  
Vol 26 (8) ◽  
pp. 1290-1296
Author(s):  
Klaus Güttner

A Monte-Carlo-Method is applied to describe the backscattering of high energy heavy ions from metal surfaces taking into account the energy losses. The calculations yield the angular and energy distributions of the reflected particles together with the percentage distributions of the complete particle histories. Furthermore it is possible to get informations concerning penetration depths and the number of collisions during the interaction of these particles with the metal foils. The calculated distributions are in good agreement with known experiments


1965 ◽  
Vol 43 (2) ◽  
pp. 268-274
Author(s):  
Charles A. Coombes

The energy radiated by a nucleon as pions in nuclear reactions is calculated by classical methods in the dipole approximation. This leads to a Cerenkov-type radiation of pions. The results are in good agreement with the measured number and spectra of pions in high-energy cosmic-ray events.


2005 ◽  
Vol 20 (29) ◽  
pp. 6735-6738 ◽  
Author(s):  
CATIA GRIMANI

We present preliminary results of the estimate of isolated pulsar contribution to the positron and electron interstellar fluxes when a polar cap model is assumed. Pulsars of all ages outside their host remnants have been considered. Cosmic-ray positron observations above a few GeV seem to indicate that an outer gap model is favoured over a polar cap model when the contribution of young pulsars only is taken into account. Here we show that pulsars with ages ranging between 10 kyr and 600 kyr, escaped from their remnants, give a contribution to the interstellar positron flux larger than that proposed in literature for the whole sample of pulsars younger than 10 kyr. Consequently, this result also indicates that outer gap electromagnetic energy losses overcome those at the polar cap. Future, low error e+/(e+ + e-) ratio observations as well as high energy pulsed gamma-ray measurements will allow us to verify this possibility.


2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.


2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


Sign in / Sign up

Export Citation Format

Share Document